
Market Power, Expectations, and Asset Prices*

Kevin Ren† Dalton Rongxuan Zhang‡

First Version: July 25, 2025
This Version: October 9, 2025

Click here for the latest version

Abstract

Recent asset pricing research highlights subjective expectations of long-run profit growth as
a key driver of return variation. We show that these expectations—and their deviations from
full-information rational expectations—systematically depend on firms’ market power. Using
U.S. Census LBD data and analyst forecasts, we find that product market power amplifies and
prolongs overreaction, while labor market power dampens it. We also document that firm-
level overreactions are an order of magnitude larger than aggregate overreactions. Embedding
these heterogeneities in a macro-finance model reproduces core asset pricing moments—high
excess returns, volatility, and predictable reversals—and shows that distorted expectations,
interacting with heterogeneous market power, generate procyclical misallocation and amplify
macro-financial fluctuations.

*We would like to thank our advisors George-Marios Angeletos, Lawrence Christiano, Nicolas Crouzet, Martin
Eichenbaum, Diego Känzig, Dimitris Papanikolaou, Matthew Rognlie, and Bryan Seegmiller for their guidance and
support. We would also like to thank Efraim Benmelech, Vivek Bhattacharya, Joel David, Maarten De Ridder, Nicola
Gennaioli, Erik Hurst, Gaston Illanes, Rafael La Porta, Kiminori Matsuyama, Konstantin Milbradt, Cristoforo Pizzimenti,
Raul Guarini Riva, Jonathan Rothbaum, Kunal Sangani, Lawrence Schmidt, Aditya Soenarjo, and Brandon Zborowski
for helpful discussions and comments. The U.S. Census Bureau has reviewed this data product to ensure appropriate
access, use, and disclosure avoidance protection of the confidential source data used to produce this product (Data
Management System (DMS) number: P-7503840 (P-7518691), Disclosure Review Board (DRB) approval numbers:
CBDRB-FY25-SEHSD003-016, CBDRB-FY25-0271, CBDRB-FY25-0359).

†Kellogg School of Management, Northwestern University. kevin.ren@kellogg.northwestern.edu
‡Department of Economics, Northwestern University. r.zhang@u.northwestern.edu

https://ren-kevin.github.io/files/working_papers/markup_markdown_series/rz_kr_asset_pricing.pdf
mailto:kevin.ren@kellogg.northwestern.edu
mailto:r.zhang@u.northwestern.edu


1 Introduction

In asset pricing, firm valuations and returns are determined by two components: expected cash

flows and discount rates. Since the seminal findings of Shiller (1981) and Campbell and Shiller

(1988), the literature has largely focused on discount-rate variation as the dominant source of asset

price fluctuations. The realized variation in dividends and cash flows is small relative to the total

variation in asset returns, reinforcing the view that discount rates—not expected cash flows—drive

most return dynamics.

Recent work challenges this interpretation. De La O and Myers (2021) and Bordalo et al.

(2024b,a) show that subjective expectations of long-run earnings can explain a large fraction of

stock return variation, despite limited changes in actual fundamentals. These expectations deviate

systematically from full-information rational expectations (FIRE): forecast errors are predictable,

expectations exhibit overreaction, and returns display predictable reversals consistent with these

belief distortions. Together, these findings suggest that fluctuations in subjective expectations about

future profits—rather than discount-rate variation—account for much of the observed volatility in

asset prices.

If expectations about future profits are central to asset prices, a natural question follows: what

determines those profits, and how are beliefs about their future path formed? Profits are grounded

in economic fundamentals and shaped by firms’ competitive environments. The key determinant

is market power—whether exercised in product markets through the ability to set prices above

marginal cost or in labor markets through the ability to suppress wages below the marginal revenue

product of labor. These two forms of market power are conceptually distinct, operate through

different channels, and jointly determine a firm’s capacity to generate and sustain abnormal cash

flows. While product market power has long been the focus of empirical and theoretical research,

labor market power has received far less attention. Building on our companion paper Ren and

Zhang (2025), we examine how firm-level overreaction varies with market power and explore its

implications for asset prices and the real economy.

Building on this motivation, we ask how market power—whether in product or labor markets—

relates to subjective expectations of profits, and how these expectations in turn interact with market

power to shape asset returns and real outcomes. We show that expectations are systematically

distorted: they deviate from full-information rational expectations and vary systematically with

the type and degree of market power a firm holds. Firms with greater product market power (high

markups) exhibit stronger and more persistent overreaction, while firms with greater labor market

power (high markdowns) exhibit weaker and shorter-lived distortions. Quantitatively, firm-level

overreaction is roughly an order of magnitude larger than that observed in aggregate markets.

To study the implications of these findings, we embed the estimated heterogeneity in expecta-

tions into a simple macro-finance model. The model replicates key asset-pricing moments—excess

return levels, volatility, and predictable return reversals—through variation in cash-flow expec-
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tations alone. The interaction of heterogeneous overreaction and heterogeneous market power

amplifies procyclical misallocation, as firms with low market power and productivity respond

excessively to shocks while high-market-power firms adjust more slowly. Belief distortions thus

emerges as an independent force that amplifies macroeconomic and financial fluctuations beyond

what can be explained by fundamentals alone. Together, these results highlight that differences in

both actual and perceived market power play a central role in shaping macro-financial outcomes.

High-markup firms—those with strong product market power—exhibit forecast-error and

return-reversal magnitudes similar to those of typical firms, but their belief dynamics differ sharply.

Their long-term earnings forecasts are more persistent, forecast revisions mean revert more slowly,

and expectation errors decay only gradually. As a result, valuation cycles display more pronounced

and prolonged booms and busts. Investors interpret shocks to perceived profitability as more

permanent, and these misperceptions are slow to unwind.

For high-markdown firms—those with strong labor market power—the dynamics are markedly

different. Forecast errors and return reversals are less predictable than for the baseline group,

long-term growth forecasts are less persistent, and revisions mean revert more quickly. Belief

distortions fade faster, leading to more tempered valuation responses. While high-markdown firms

still exhibit overreaction, their expectations adjust more rationally to new information, making

them less prone to sustained mispricing.

We quantify these patterns by jointly estimating the diagnostic-expectations model across firm

types. The estimates closely align with the theoretical mapping: high-markup firms exhibit the

strongest overreaction and the most persistent belief distortions; high-markdown firms display

weaker but still significant overreaction and the least persistence; and baseline firms fall between

these two extremes. Moreover, firm-level overreaction is substantially larger than the aggregate-

level distortions documented in prior research.

The model builds directly on these empirical patterns. Taking as given the observed heterogene-

ity in overreaction and market power, we construct a simple macro-finance framework to assess

whether these features can jointly account for key asset-pricing and macroeconomic regularities.

Specifically, we examine whether the model can generate elevated excess returns and volatility,

predictable return reversals, and realistic cross-sectional patterns in firm behavior and performance.

Firms differ along two dimensions: (i) heterogeneous market power—capturing variation in both

product and labor market dominance, with total market power defined as the product of the two—

and (ii) heterogeneous overreaction, characterized by differences in the magnitude and persistence

of belief distortions. This structure allows us to trace how belief heterogeneity and market power

interact to shape both financial and real outcomes.

The model with diagnostic expectations successfully replicates key asset-pricing moments that

the rational expectations benchmark fails to match. Despite its simple structure and fixed discount

rates, it generates high excess returns and return volatility purely through variation in subjective

cash-flow expectations. The impulse response functions (IRFs) reveal predictable return reversals
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following positive productivity shocks, consistent with the empirical evidence on overreaction and

subsequent mean reversion in beliefs and valuations. Decomposing the return responses shows

that both heterogeneity in market power and heterogeneity in overreaction contribute to these

dynamics, though the majority of the variation is driven by overreaction heterogeneity. By contrast,

the rational expectations model cannot reproduce these predictable reversals.

To understand the underlying mechanism, we examine the model’s real-side dynamics. Diag-

nostic expectations induce stronger and more persistent real responses, producing hump-shaped

patterns in output and profits that qualitatively match empirical macroeconomic IRFs. Capital

investment, in particular, exhibits a pronounced boom-bust cycle that serves as the main real driver

of both elevated return volatility and predictable reversals. In contrast, the rational expectations

model generates much flatter and less persistent dynamics, underscoring the amplifying role of

belief distortions in shaping both asset prices and real activity.

Beyond asset-pricing moments, understanding the allocation of capital across firms is central

to evaluating the broader macroeconomic consequences of belief distortions. Efficient capital

allocation ensures that productive firms expand while less productive ones contract; distortions in

beliefs or market power can therefore generate persistent misallocation and welfare losses. Our

model shows that the interaction between distorted expectations and heterogeneous market power

amplifies these inefficiencies, particularly in response to aggregate shocks. Following a positive

productivity shock, the model with diagnostic expectations and heterogeneous firms exhibits

a peak relative productivity loss of −0.33% compared to the efficient allocation. By contrast, a

rational expectations model with heterogeneous firms generates a smaller peak loss of −0.25%.

When benchmarked against a rational expectations model with homogeneous firms, the diagnostic-

expectations model implies more than a 30% larger misallocation. These results underscore the

amplifying role of belief distortions when combined with firm-level frictions.

Importantly, this result extends beyond partial equilibrium. In general equilibrium, with a ho-

mothetic aggregator, heterogeneous market power alone does not generate cyclical misallocation—

proportional price adjustments eliminate firm-level differences in response under either rational

expectations or uniform belief distortions. Cyclical misallocation arises only when both heterogene-

ity in market power and heterogeneity in overreaction are present, as the combination preserves

differential responses even after aggregation. Moreover, the correlation between overreaction,

productivity, and market power determines the direction of the effect: if firms that overreact more

also have lower market power, misallocation is procyclical; if the opposite correlation holds, it

becomes countercyclical.

To further isolate the role of heterogeneous belief distortions, we consider a model with diag-

nostic expectations and heterogeneous market power but without heterogeneity in expectation

parameters. This specification yields a slightly smaller peak misallocation of −0.32%, suggesting

that most of the amplification arises from the presence of diagnostic expectations itself, while

heterogeneity in belief distortions adds a modest incremental effect. Conversely, when firm hetero-
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geneity is shut down and diagnostic expectations are applied to a representative firm, the relative

misallocation disappears entirely. This highlights the importance of heterogeneous market power

in generating misallocation: firms with low market power respond more aggressively to positive

shocks—both in fundamentals and beliefs—while high-market-power firms adjust more slowly.

Under diagnostic expectations, this imbalance is amplified as investors overreact to firm-level news,

further distorting investment flows and increasing misallocation over the cycle.

Related Literature. This paper contributes to a growing literature that studies and incorporates

diagnostic expectations in finance and macroeconomics (e.g., Bordalo, Gennaioli and Shleifer, 2018;

Bordalo et al., 2019, 2020, 2024b,a; Gennaioli, Ma and Shleifer, 2016; Maxted, 2024; Bianchi, Ilut and

Saijo, 2024; Ilut and Valchev, 2023; De La O and Myers, 2021; De la O and Myers, 2024; Delao, Han

and Myers, 2025). We introduce a cross-sectional perspective by estimating firm-level overreaction

and relating it to observable firm characteristics, namely the degree and type of market power.

Firms with high price markups (product market power) exhibit stronger overreaction, while those

with high wage markdowns (labor market power) exhibit weaker responses. We incorporate these

patterns into a stylized macro-finance model with heterogeneous firms and diagnostic expectations,

which generates excess return volatility, return predictability, and real-side volatility in a standard

production setting. This approach links belief distortions not only to asset pricing moments but

also to variation in firm behavior and aggregate productivity dynamics.

Our paper also contributes to a strand of literature that examines the relationship between

market power and asset pricing (e.g., Bustamante and Donangelo, 2017; Corhay, Kung and Schmid,

2020; Corhay, Li and Tong, 2022; Corhay, Kung and Schmid, 2025), and that integrates firm-level

market power into broader macro-finance frameworks. We build on this work by incorporating

both diagnostic expectations and firm-level characteristics documented by Ren and Zhang (2025) to

study the joint interaction of behavioral biases, market power, and asset prices. In our model, belief

distortions alone generate sizable excess returns, return volatility, and return predictability, even

without variation in discount rates. Moreover, introducing heterogeneous firm-level market power

amplifies the effects of diagnostic expectations on asset prices and gives rise to more substantial

procyclical misallocation over the business cycle.

Finally, this paper contributes to the literature that studies market power in the macroeconomic

context (e.g., Syverson, 2011; De Loecker, Eeckhout and Unger, 2020; Farhi and Gourio, 2018;

Gutiérrez and Philippon, 2017; Autor et al., 2020; Peters, 2020; De Ridder, 2024; Atkeson and

Burstein, 2008; Traina, 2018; Yeh, Macaluso and Hershbein, 2022; Berger, Herkenhoff and Mongey,

2022; Akcigit and Ates, 2023). This literature typically examines the rise and heterogeneity of

firm-level markups and markdowns, their implications for productivity, labor market outcomes,

and investment, and their role in driving long-run macroeconomic trends such as declining labor

shares and reduced business dynamism. We contribute to this literature by incorporating the

interaction of diagnostic expectations and asset prices with market power, and show that diagnostic
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expectations can amplify procyclical misallocation resulting from heterogeneous market power.

Outline. Section 2 describes the datasets used as well as how price markups and wage markdowns

are estimated. Section 3 presents the model of diagnostic expectations and the empirical evidence of

firm-level heterogeneity. Section 4 discusses the comparative statics of the diagnostic expectations

model’s empirical predictions and estimates the model’s parameters. Section 5 presents a macro-

finance model that incorporates the calibrated diagnostic expectations. Section 6 conducts various

quantitative exercises with the macro-finance model. Finally, Section 7 concludes.

2 Data and Market Power Estimation

The datasets we utilize build on the firm-level panel developed by Ren and Zhang (2025).

We augment it with the Institutional Brokers’ Estimate System (IBES) Unadjusted U.S. Summary

Statistics file, which contains analyst forecasts for U.S. publicly traded firms. The base dataset from

Ren and Zhang (2025) is an annual panel that merges the Longitudinal Business Database (LBD),

which a restricted-use business establishment dataset from the U.S. Census Bureau, with the annual

CRSP/Compustat Merged database. Then Ren and Zhang (2025) proceed to estimate price markups

and wage markdowns using this dataset and construct a firm-year panel of firm-level market power.

We extend this dataset in two ways: first, by merging in year-end IBES observations to construct an

annual panel; and second, by creating a monthly panel that retains the IBES frequency and links in

firm-level market power and characteristics at the annual level. We describe these datasets in detail

in Section 2.1 and summarize the estimation approach in Section 2.2. Additional details on data

construction and estimation are provided in Appendix B.

2.1 Data Sources

The IBES dataset is a monthly panel containing analyst forecasts for U.S. publicly traded firms

(Center for Research in Security Prices, 2025). The key variable of interest in our analysis is the

median analyst forecast of a firm’s earning per share (EPS) long-term growth (LTG). The LTG

is defined as the “expected annual increase in operating earnings over the company’s next full

business cycle. These forecasts refer to a period of between three to five years.” The LTG variable

is available beginning in December 1981. We follow the procedure of Bordalo et al. (2024a) to

construct the monthly firm-level panel of median LTG forecasts.1 We also follow their procedure to

construct aggregate-level LTG measures.

There are potential concerns with using analyst forecasts such as they may be distorted by

agency conflicts or may not accurately reflect the expectations of investors or firms. First, to mitigate

the influence of idiosyncratic biases and outliers, we use the median forecast across analysts for

1We thank Rafael La Porta and Nicola Gennaioli for assistance with the replication package.
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each firm. Moreover, prior research suggests that, despite predictable forecast errors, sell-side

analysts exert substantial effort and have strong incentives to produce accurate forecasts. van

Binsbergen, Han and Lopez-Lira (2023) show that analyst forecasts contain valuable information for

predicting future earnings, even relative to a machine-learning algorithm trained on an extensive

set of publicly available variables. Grennan and Michaely (2020) provide complementary evidence

that analysts actively gather firm-specific information such as by asking questions during earnings

calls and meeting with management and institutional investors. More broadly, Kothari, So and

Verdi (2016) survey the literature linking analyst forecasts and asset pricing and conclude that

reputational concerns provide analysts with strong motivation to issue credible and accurate

forecasts.

A second concern is that analyst forecasts may not represent the expectations of investors or

firms. Empirical evidence suggests otherwise. Bordalo et al. (2019) document that analysts not only

learn about firm fundamentals based on past performance but also share investors’ overreaction to

new information, as reflected in the joint dynamics of returns, expectations, and realized earnings

growth. De La O and Myers (2021) show that short-term analyst earnings expectations closely track

short-term cash-flow growth. Finally, Gennaioli, Ma and Shleifer (2016) and Bordalo et al. (2024b)

find that CFO expectations co-move with analyst expectations and display similar deviations from

rational expectations, including overreaction. Taken together, these findings suggest that analyst

forecasts provide an informative and behaviorally consistent proxy for the beliefs that shape both

firm decisions and market prices.

The next key data source is the LBD, which is an establishment-level annual census of the U.S.

non-farm private sector (United States Census Bureau, 2022). We collapse the LBD to the firm-level

using the Census-provided firm identifiers. The version we use has coverage from 1976 to 2019.

Chow et al. (2021) provide more information on the construction of the LBD. We merge the firm-

level LBD to the annual Compustat/CRSP merged dataset using a crosswalk provided by Lawrence

Schmidt. The LBD provides reliable measures of firm-level employment and payroll, which are

often missing or inconsistently reported in Compustat (variables EMP and XLR, respectively). The

merged CRSP/Compustat-LBD dataset allows us to estimate price markups and wage markdowns

while retaining detailed financial accounts data. This merged panel also includes various standard

macroeconomic and financial time series that are publicly available.

We construct two merged panels for analysis. The first is an annual panel, created by taking

December values from the IBES dataset and merging them to the panel from Ren and Zhang

(2025). The second is a monthly panel that retains the IBES monthly structure and merges in

firm-level variables, such as market power measures, by matching on firm and year. Table 1 reports

summary statistics for key variables in our final annual-level sample. For comparison, Table A1

in Appendix A.2 presents the summary statistics for the full Compustat sample over the same

period. Firms in our merged sample tend to be larger on average. In addition, LTG values are

generally high (with a sample mean of 15.7%), consistent with the findings of Chan, Karceski and
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Table 1: Final Sample Summary Statistics (Annual Level)

Variable Mean SD P10 P25 Median P75 P90 Obs.
(1) (2) (3) (4) (5) (6) (7) (8)

Log Sales 19.820 2.042 17.210 18.350 19.780 21.220 22.550 69,500
Log COGS 19.330 2.104 16.630 17.820 19.310 20.770 22.100 69,500
Log SGA 18.210 1.936 15.780 16.800 18.120 19.500 20.810 69,500
Log Wage Bill 18.070 1.938 15.590 16.700 18.080 19.390 20.610 69,500
Log Employment 7.179 2.006 4.605 5.793 7.211 8.561 9.801 69,500
Log Physical Capital 18.160 2.358 15.160 16.470 18.070 19.770 21.340 69,500
Log Intangible Capital 18.260 2.000 15.770 16.810 18.140 19.540 20.960 69,500
Log Total Assets 19.670 2.097 16.990 18.130 19.570 21.100 22.470 69,500
Log Market Cap 19.020 2.397 16.000 17.230 18.920 20.700 22.170 69,000
Labor Share VA 0.668 0.391 0.298 0.470 0.641 0.789 0.956 69,500
LTG 0.157 0.100 0.080 0.105 0.150 0.200 0.250 35,500

Notes: This table presents the summary statistics of the final annual-level sample used in the
analysis. The sample ranges from 1977 to 2019. All nominal variables are deflated using the
BEA’s GDP Price Deflator. Column (1) reports the mean, and Column (2) reports the stan-
dard deviation. Columns (3) to (7) report the 10th percentile, 25th percentile, median, 75th
percentile, and 90th percentile, respectively. Column (8) reports the number of observations.
All figures are rounded in accordance with U.S. Census disclosure requirements. Other than
the LTG variable, this table is directly replicated from Ren and Zhang (2025).

Lakonishok (2003), who document that analyst long-term growth forecasts on average tend to be

overly optimistic.

2.2 Estimation of Price Markups and Wage Markdowns

In this section we briefly describe how price markups and wage markdowns are estimated,

which are our measures of product market power and labor market power, respectively.2 Price

markups and wage markdowns are estimated following the methods of Hall (1988), De Loecker

and Warzynski (2012), Dobbelaere and Mairesse (2013) and Yeh, Macaluso and Hershbein (2022).

The procedure consists of two steps: we first estimate production functions to recover firm-level

output elasticities, and then use ratio estimators to compute price markups and wage markdowns.

We define firm-level price markups µi,t and wage markdowns νi,t as follows

µi,t =
Pi,t

MCi,t
, (1)

νi,t =
MRPLi,t

Wi,t
, (2)

2See Appendix B and Ren and Zhang (2025) for a more comprehensive discussion of this procedure as well as the
associated caveats. See also Traina (2018), Bond et al. (2021), Yeh, Macaluso and Hershbein (2022), and De Ridder, Grassi
and Morzenti (2025) for more discussions on the caveats of production function estimation and the use of the ratio
estimators.
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where the price markup µi,t is the ratio between the price of output Pi,t and its marginal cost MCi,t

and the wage markdown νi,t is the ratio between the marginal revenue product of labor MRPLi,t to

the wage paid Wi,t. While we do not directly observe prices, marginal costs, or marginal revenue

products, we can relate Equations (1) and (2) to the ratio of output elasticities and cost shares

through the firm’s first-order optimality conditions.3 We can estimate output elasticities with the

data available and cost shares are directly observable with financial accounts data.

We now formally define two input types used in the estimation procedure. Definition 1

introduces a flexible input f , which is used for the estimation of price markups and wage markdowns.

Definition 2 defines a monopsonistic input l, which satisfies all of the flexible input conditions except

that it may be subject to monopsony power and is therefore not used for the markup estimation

but are used for the markdown estimation.

Definition 1 (Flexible Input). An input f is considered flexible if it satisfies the following conditions:

1. It is not subject to adjustment costs.

2. It is not subject to monopsony or oligopsony power.

3. It is chosen statically by the firm in each period.

4. The production function is twice continuously differentiable in input f .

5. It is used solely for the production of output.

Definition 2 (Monopsonistic Input). An input l is considered monopsonistic if it satisfies all the conditions
of a flexible input except that it may be subject to monopsony or oligopsony power.

Given Definitions 1 and 2 we can now define the ratio estimators for price markups and wage

markdowns used in our analysis with Proposition 1.

Proposition 1 (Ratio Estimators). Suppose there exists at least one input f that is flexible and at least one
input l that is monopsonistic. Then firm i’s price markup and markdown on input l are given by

µi,t =
θ

f
i,t

α
f
i,t

, (3)

νl
i,t =

θl
i,t

αl
i,t

α
f
i,t

θ
f
i,t

, (4)

where θ
j
i,t denotes the output elasticity of input j and α

j
i,t is the cost share of revenue of input j.

Proof. See Appendix B.2 for the proof.

3We define the cost share as the total expenditure of the input divided over total revenue.

8



We estimate the production function estimation procedure developed by De Loecker and

Warzynski (2012), which relies on a proxy variable approach and builds upon the methods of

Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg, Caves and Frazer (2015).

The estimation consists of two stages, the first stage recovers expected output and an error term

and the second stage estimates the production function parameters given the productivity process.

We estimate a separate production function for each two-digit NAICS (NAICS2) industry in the

sample.

We utilize four inputs to estimate the production function: materials, labor, physical capital,

and intangible capital. Materials serve as the flexible input and are defined as the sum of cost of

goods sold (COGS) and selling, general, and administrative expenses (XSGA), minus the wage bill

from the LBD and other fixed costs such as rent. Labor is directly observed from the LBD. Physical

capital is constructed using a standard forward-iteration capitalization method, and intangible

capital is constructed using the same method following the approach of Eisfeldt and Papanikolaou

(2013) and Peters and Taylor (2017). Our choice of materials as the flexible input is motivated

by the critique in Traina (2018), who argue that COGS alone does not fully capture flexible input

expenditures for markup estimation.4

Using these inputs, we implement the first stage of the estimation procedure by regressing the

log deflated sales yi,t onto a specified functional form. In general we estimate

yi,t = ϕt(xi,t, zi,t) + ε i,t, (5)

where xi,t is a vector of inputs, zi,t is a vector of controls such as time fixed effects, ε i,t is an error

term, and

ϕt(xi,t, zi,t) = Pk(xi,t) + ht(mi,t, ki,t, zi,t),

where Pk(·) is a k-order polynomial function and ht(·, ·, ·) is the control function. We implement

the first stage by regressing yi,t onto a second-order polynomial of xi,t with year fixed effects via

OLS. This yields the predicted log output ϕ̂i,t and predicted residuals ε̂ i,t, which are utilized in the

second stage.

The second stage addresses the endogeneity arising from unobserved firm-level productivity,

which is assumed to be Hicks-neutral and denoted ωi,t (in logs). Since productivity not directly

observed, regression coefficients from the first stage cannot be interpreted as the production

function parameters. We assume that the production function is translog. Let f (xi,t; β̂) be the log

production function evaluated at the input bundle xi,t given the production function parameter

vector β̂. Then the implied log firm-level productivity is given by

ωi,t(β̂) = ϕ̂i,t − f (xi,t; β̂).

4See Ren and Zhang (2025) for a more detailed discussion.
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We assume that firm-level productivity follows a stationary AR(1) given by

ωi,t(β̂) = (1 − ρω)ω̄ + ρωωi,t−1(β̂) + ξi,t(β̂),

where ρω ∈ (0, 1) is the persistence parameter, ω̄ is the unconditional mean, and ξi,t(β̂) is a mean

zero shock process.

We estimate β̂ using generalized methods of moments (GMM) with the following moment

condition

E
[
ξi,t(β̂) · z̃i,t

]
= 0, (6)

where z̃i,t denotes a vector of instruments. The instruments include the lagged materials and

labor inputs as well as the current physical capital and intangible capital inputs along with their

interactions and second-order terms. The identification of the parameters relies on a timing

assumption. The productivity shock ξi,t is observed by firms at the beginning of period t but

unobservable to the econometrician. Firms make contemporaneous decisions on materials and

labor, while capital stocks are predetermined. As such, the productivity shock is assumed to be

uncorrelated with the current capital stock and lagged input choices.

Given the production function’s estimated parameters β̂, we compute firm-level output elastici-

ties. Under the translog specification, output elasticities are linear functions of the input bundle

and are straightforward to compute. As previously noted, cost shares are directly observable from

the financial data. With both components, we can implement the ratio estimators to recover price

markups and wage markdowns.5 With firm-level price markups and wage markdowns estimated,

we now proceed to the discussing and presenting some stylized facts about market power and

analyst expectations.

Using the estimated firm-level price markups and wage markdowns, we construct indicator

variables that equal one if a firm falls within the top decile of price markups or, separately, the top

decile of wage markdowns within its NAICS2–year cell. These measures allow us to capture the

cross-sectional heterogeneity most relevant for our analysis.

The central empirical patterns documented by Ren and Zhang (2025), which we use to discipline

the calibration of the model in Section 5, are as follows:

1. Price markups are negatively related to firm size and productivity, but positively related to

the labor share.

2. Wage markdowns are positively related to firm size and productivity, but negatively related

to the labor share.

3. Price markups and wage markdowns are negatively correlated.
5We apply the correction method of De Loecker and Warzynski (2012) and De Loecker, Eeckhout and Unger (2020)

to the cost share α̂
j
i,t ≡ α

j
i,t exp(−ε̂i,t) where α

j
i,t is the computed cost share of input j and ε̂i.t is the residual from the first

stage in Equation (5). This approach removes any output variation not related to variables impacting input demand and
market characteristics.
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Regression results supporting these stylized facts are reported in Tables A2 and A3 of Appendix A.2.

These tables reproduce the univariate regressions with NAICS2–year fixed effects from Ren and

Zhang (2025).

3 Diagnostic Expectations and the Asymmetry of Market Power

This section presents a model of diagnostic expectations following Bordalo et al. (2024a), and

uses this framework to analyze how behavioral responses vary with firm-level market power.

The rest of the section is structured as follows: Section 3.1 outlines the model of expectations and

returns, and Section 3.2 presents the empirical results.6

3.1 Model of Diagnostic Expectations and Returns

To analyze how belief distortions shape asset prices, we begin with the decomposition of log

returns following Campbell and Shiller (1987, 1988). The log realized return ri,t+1 between periods

t to t + 1 is given by

ri,t+1 = αpi,t+1 + (1 − α)di,t+1 − pi,t + k, (7)

where pi,t+1 is the log stock price of i at t + 1, di,t+1 is the log dividend paid at t + 1, and k < 0 and

α ∈ (0, 1) are constants from the log linearization. Rearranging Equation (7) in terms of the log

price-to-earnings (P/E) ratio yields

pi,t − ei,t = k + (ei,t+1 − ei,t)− ri,t+1 + (1 − α)d̂i,t + α(pi,t+1 − ei,t+1), (8)

where ei,t is log earnings at t + 1 and d̂i,t ≡ di,t − ei,t is the log dividend payout ratio. Following

De La O and Myers (2021), we assume 1 − α ≈ 0 and drop the payout ratio term for simplicity. We

iterate forward Equation (8) and impose a transversality condition lims→∞ αt+s
Ẽt
[
pi,t+s − ei,t+s

]
=

0 to obtain

pi,t − ei,t =
k

1 − α
+ ∑

s≥0
αs

Ẽt
[
gi,t+1+s

]
− ∑

s≥0
αs

Ẽt
[
ri,t+1+s

]
, (9)

where gi,t+1+s ≡ ei,t+1+s − ei,t+s is the earnings growth rate and Ẽt [·] denotes subjective expec-

tations at time t that may not necessarily be rational. Equation (9) can be rearranged to express

realized returns

ri,t+1 = Ẽt
[
ri,t+1

]
+ ∑

s≥0
αs∆Ẽt+1

[
gi,t+1+s

]
− ∑

s≥1
αs∆Ẽt+1

[
ri,+1+s

]
, (10)

where ∆Ẽt+1 [x] ≡ Ẽt+1 [x] − Ẽt [x] is the revision in beliefs. Following De La O and Myers

(2021) and Bordalo et al. (2024a), we assume a constant discount rate and focus on distortions in

6We repurpose some notation from the previous section where appropriate; otherwise, notation retains its prior
definitions.
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expectations about future earnings growth. Under this assumption, return predictability arises

from belief revisions rather than from time-varying discount rates. This motivates the central role

of expectations over future earnings growth, which we describe in more detail.

We model earnings growth as an exogenous AR(1) process:

gi,t+1 = ρggi,t + ξi,t+1, (11)

where ρg ∈ (0, 1) is the true persistence of earnings growth and ξi,t+1 is an independent and

identically distributed innovation with mean zero and variance σ2
ξ . We assume that ξi,t+1 consists

of two uncorrelated mean-zero Gaussian components: a tangible news shock τi,t+1 that is observed

in t + 1 and an intangible news shock κi,t that is observed in t. That is, ξi,t+1 = τi,t+1 + κi,t and

σ2
ξ = σ2

τ + σ2
κ where σ2

τ is the variance of tangible news and σ2
κ is the variance of intangible news.

Both τi,t+1 and κi,t are assumed to be independently distributed across firms and over time.

We model belief formation over earnings growth using the diagnostic expectations framework of

Bordalo et al. (2024a), building on the general theory of representativeness developed in Gennaioli

and Shleifer (2010) and Bordalo, Gennaioli and Shleifer (2018). Under diagnostic expectations,

agents overweight states that are more representative relative to prior beliefs. Specifically, the

subjective density used to forecast one-period-ahead earnings growth is given by

f θ
t (gi,t+1) = f (gi,t+1 | gi,t, κi,t)

(
f (gi,t+1 | gi,t, κi,t)

f (gi,t+1 | Et−1
[
gi,t
]

, κi,t−1)

)θ
1
Z

, (12)

where Z ∈ R++ is a constant that ensures the density integrates to 1 over its support and θ ≥ 0

governs the intensity of representativeness.7 When θ = 0 agents use the correct distribution and

thus have rational expectations. Conversely, when θ > 0 agents overweight representative states

and underweight unrepresentative states.

Since we are interested in agents’ expectations not only one period ahead but across multiple

future periods s ≥ 1, we extend the diagnostic expectations formulation in Equation (12) following

Bordalo, Gennaioli and Shleifer (2018). The distorted subjective density used to forecast s-period-

ahead earnings growth is

f θ
t (gi,t+s) = f (gi,t+s | gi,t, κi,t)Rθ

i,s,t, (13)

Ri,s,t =
1
Z ∏

n≥1

[
f (gi,t+s | Et+1−n

[
gi,t
]

, κi,t+1−n)

f (gi,t+s | Et−n
[
gi,t
]

, κi,t−n)

]γn

, (14)

where Z is a normalizing constant and γn governs how much weight agents place on changes

7Gennaioli and Shleifer (2010) formalize representativeness as follows: consider the distribution of a trait T in group
G, with true distribution f (T = t | G). The representativeness of trait T = t for group G is defined as the likelihood
ratio f (T = t | G)/ f (T = t | Gc), where Gc is a comparison group. A trait is more representative if it is relatively
more frequent in G than in Gc. Due to limited memory, more representative types are more easily recalled and thus
overweighted in agents’ beliefs.
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in prior beliefs at different lags. The term Ri,s,t captures the representativeness of the forecasted

outcome gi,t+s based on how surprising it appears relative to past expectations. When γn = 0 for

all n > 1, the model reduces to a memoryless version in which only the most recent belief revision

matters.

To operationalize the general diagnostic expectations framework, we adopt a specific form

of memory decay in belief formation. Following Bordalo et al. (2024a), we assume that memory

weights decline geometrically: γn = γn−1 for some γ ∈ (0, 1). This structure implies that agents

gradually adjust their beliefs over time, placing greater weight on more recent revisions. It captures

sluggish updating while remaining analytically tractable.

Under this assumption, the diagnostic forecast of future earnings growth simplifies considerably.

Using results from Bordalo, Gennaioli and Shleifer (2018), the distorted expectation is given by

Ẽt
[
gi,t+s

]
= Et

[
gi,t+s

]
+ θ ∑

n≥1
γn−1 (

Et+1−n[gi,t+s]− Et−n[gi,t+s]
)

, (15)

where the second term captures accumulated overreaction to past forecast revisions. Given the

AR(1) structure of earnings growth, we can further collapse this expression into a closed-form

distortion process, which we state formally below.

In particular, we set γ = ρζ/ρg, where ρζ < ρg is the persistence of belief distortions. This as-

sumption nests the sluggish diagnostic expectations framework of Bordalo et al. (2024a) and allows

us to simplify the diagnostic forecast in Equation (15) into a closed-form expression. Proposition 2

formalizes this result.

Proposition 2 (Simplified Diagnostic Expectations). Suppose agents form expectations using the
distorted distribution defined by Equations (13) and (14), with memory weights γn = γn−1 and γ = ρζ/ρg,
where ρζ < ρg. Then the s-period-ahead forecast of earnings growth satisfies:

Ẽt
[
gi,t+s

]
= Et

[
gi,t+s

]
+ ρs−1

g ζi,t, (16)

where the rational forecast is Et[gi,t+s] = ρs−1
g (ρggi,t + κi,t), and ζi,t is a belief distortion evolving according

to
ζi,t = ρζζi,t−1 + ui,t, (17)

with the expectations shock given by
ui,t = θ(ρgτi,t + κi,t). (18)

Proof. See Appendix C.1 for the proof.

The belief distortion ζi,t captures systematic deviations from rational expectations, driven by

overreaction to recent news. Its persistence ρζ governs the dynamics of the belief distortion. When

ρζ < ρg, distortions decay more quickly than fundamentals, implying that LTG revisions ∆Ẽt[gi,t+s]

are negatively autocorrelated. In other words, excess optimism or pessimism tends to revert.
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The expectation shock ui,t = θ(ρgτi,t + κi,t) represents the distorted response to new information

received at time t. It is the immediate update to beliefs, and reflects agents’ over- or underreaction

to both the tangible news τi,t and intangible news κi,t arriving in period t.8 The parameter θ governs

the direction and magnitude of distortion: if θ = 0, expectations are rational and agents respond

proportionally to news; if θ > 0, representative news is overweighted, leading to exaggerated

revisions.

The combination of Equations (10) and (16) yields the empirical tests and predictions of Bordalo

et al. (2024a), which we extend to the firm-level and augment to allow for heterogeneity by

characteristics. In particular, we examine whether belief distortions vary systematically with

firm characteristics such as product and labor market power. While the baseline model assumes

common values of the distortion persistence ρζ and reaction parameter θ across firms, we test

empirically whether these parameters differ by market power. We now state the original empirical

specifications from Bordalo et al. (2024a) and link them to the model’s structural parameters.

We consider three main empirical specifications adapted from Bordalo et al. (2024a). First, we

examine earnings growth forecast errors as a function of belief revisions and past expectations,

which is given by

gi,t+s − Ẽt
[
gi,t+s

]
= βFE

0 + βFE
1 ∆Ẽt

[
gi,t+s

]
+ βFE

2 Ẽt−1
[
gi,t+s

]
+ ε i,t+s. (19)

If there is overreaction, i.e. θ > 0, then βFE
1 < 0 and βFE

2 < 0. Under rational expectations (θ = 0)

then βFE
1 = βFE

2 = 0.

Second, we test for belief reversion with

∆Ẽt
[
gi,t+s

]
= βRev

0 + βRev
1 Ẽt−1

[
gi,t+s

]
+ ε i,t. (20)

If belief distortions are less persistent than the underlying fundamentals (ρζ < ρg), then βRev
1 < 0,

implying that long-term growth expectations revert over time. Furthermore, if agents have rational

expectations then ρζ = ρg − 1 otherwise under diagnostic expectations ρζ ̸= ρg − 1. The coefficients

βFE
1 , βFE

2 , βRev
1 in the regressions in Equations (19) and (20) have close-form expressions, which are

provided in Appendix C.2.

Finally, return predictability arises from systematic belief errors and distorted responses to

news. The return regression implied by the model is given by

ri,t+1 = ri +

(
1 − αρζ

1 − αρg

)
Et
[
gi,t+1 − Ẽt[gi,t+1]

]
+

(
1 + αθ

1 − αρg

)
τi,t+1 +

(
α(1 + θ)

1 − αρg

)
κi,t+1. (21)

Overreaction implies that both LTG revisions and lagged expectations negatively predict forecast

errors and realized returns, while forecast errors themselves positively predict future returns. This

8Note that tangible news needs to be adjusted by ρg given the timing assumption of when it affects growth.
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Table 2: 5-Year Forecast Error Predictability (NAICS2 × Month FE)

Forecast Error (5-Year)
(1) (2) (3) (4)

LTG Revision -0.825 -0.826 -0.829 -0.824
(0.026) (0.026) (0.027) (0.026)

LTG Revision × High Markup 0.037 0.038
(0.107) (0.108)

LTG Revision × High Markdown 0.015 0.018
(0.086) (0.087)

LTG Revision × High Total Market Power -0.002
(0.082)

LTG (Lag 1) -0.823 -0.848 -0.848 -0.845
(0.031) (0.031) (0.033) (0.031)

LTG (Lag 1) × High Markup (Lag 1) -0.017 0.004
(0.058) (0.059)

LTG (Lag 1) × High Markdown (Lag 1) 0.163 0.164
(0.067) (0.068)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.144
(0.065)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE No No No No
Observations 246,000 246,000 246,000 246,000

Notes: This table presents regressing 5-year realized forecast error against LTG revisions
and lagged LTG along with interactions. All specifications include NAICS2 × month
fixed effects. Column (1) presents the specification with only an interaction for high
markup firms. Column (2) presents the specification with only an interaction for high
markdown firms. Column (3) presents the specification with interactions with both high
markup and high markdown firms. Column (4) presents the specification with an inter-
action with high market power firms. Standard errors are reported in parentheses and
are two-way clustered by firm and year. All figures are rounded in accordance with U.S.
Census disclosure requirements.

behavior also implies that stock returns exhibit predictable reversals.

We extend these regressions by allowing the coefficients to vary with firm-level product and

labor market power. Heterogeneity in these coefficients is consistent with heterogeneity in the

structural parameters θ and ρζ as well as ρg. We detail our empirical implementation and interaction

specifications in Section 3.2.

3.2 Empirical Results

We proceed by estimating Equations (19) to (21), allowing for heterogeneity across firm types

defined by market power. We begin with the forecast error regression, estimated using the following
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specification:

gi,t+s − Ẽt
[
gi,t+s

]
= ∑

j∈D

(
βFE

1,j∆Ẽt
[
gi,t+s

]
+ βFE

2,jẼt−1
[
gi,t+s

])
× 1{i ∈ j}+ Z⊺

i,tγ + ε i,t+s, (22)

where D denotes the set of firm types (all firms, high markup firms, high markdown firms, high

total market power firms), and Zi,t includes fixed effects and the uninteracted indicator variables.9

High markup firms are defined as those in the top 10% of price markups within their NAICS2

industry-year. High markdown and high total market power firms are defined analogously.

Table 2 reports results across four specifications. Column (1) includes interactions with high

markup firms only; Column (2) with high markdown firms only; Column (3), our preferred

specification, includes both; and Column (4) includes only high total market power interactions.

Results are consistent across specifications.10

As in Bordalo et al. (2024a), we find strong evidence of overreaction: the baseline coefficients on

LTG levels and revisions are negative and highly significant across all specifications. For instance,

the coefficient on LTG revision is −0.829 in Column (3), and the coefficient on lagged LTG is −0.848.

Under rational expectations, these coefficients would be statistically indistinguishable from zero.

The interaction terms reveal important heterogeneity. For high markup firms, the interaction

terms on both LTG revision (0.038) and LTG level (0.004) are small and statistically insignificant,

suggesting that forecast error predictability is similar to baseline firms. In contrast, high markdown

firms exhibit significantly attenuated overreaction: the interaction coefficient on lagged LTG is

0.164, partially offsetting the baseline overreaction. A similar pattern holds for high total market

power firms, with an interaction coefficient of 0.144. The interaction terms on LTG revisions for both

high markdown (0.018) and high total market power firms (−0.002) are statistically insignificant,

however. These results imply that while analysts overreact on average, this overreaction is less

pronounced for firms with high labor or total market power.

We next examine heterogeneity in the predictability of LTG revisions. Specifically, we estimate

the following regression:

∆Ẽt
[
gi,t+s

]
= ∑

j∈D
βRev

1,j Ẽt−1
[
gi,t+s

]
× 1{j ∈ D}+ Z⊺

i,tγ + ε i,t, (23)

where the dependent variable is the revision in long-term earnings growth expectations, and the

key regressor is the lagged level of the LTG, interacted with firm type indicators. Table 3 presents

the results, following a similar format as earlier specifications. Across all columns, we find that

LTG revisions are significantly negatively related to their lagged values, with baseline coefficients

9Unlike Bordalo et al. (2024a), we do not standardize LTGs and instead keep them in levels, following the comments
of De la O and Myers (2024).

10Table A4 in Appendix A.2 presents the results including a firm fixed effect for robustness. Tables A5 and A6 present
the results using the three-year forecast error instead using the same set of specifications for robustness.
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Table 3: LTG Revision Predictability (NAICS2 × Year FE)

LTG Revision
(1) (2) (3) (4)

LTG (Lag 1) -0.496 -0.494 -0.504 -0.496
(0.039) (0.039) (0.039) (0.039)

LTG (Lag 1) × High Markup (Lag 1) 0.112 0.117
(0.060) (0.061)

LTG (Lag 1) × High Markdown (Lag 1) 0.038 0.047
(0.047) (0.047)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.053
(0.053)

NAICS2 FE No No No No
NAICS2 × Year FE Yes Yes Yes Yes
Firm FE No No No No
Observations 30,000 30,000 30,000 30,000

Notes: This table presents regressing future LTG revisions against lagged LTG along
with interactions. All specifications include NAICS2 × year fixed effects. Column (1)
presents the specification with only an interaction for high markup firms. Column
(2) presents the specification with only an interaction for high markdown firms. Col-
umn (3) presents the specification with interactions with both high markup and high
markdown firms. Column (4) presents the specification with an interaction with high
market power firms. Standard errors are reported in parentheses and are two-way
clustered by firm and year. All figures are rounded in accordance with U.S. Census
disclosure requirements.

around −0.50, consistent with predictable mean reversion in expectations.11 This finding holds

across all firm types.

However, we observe heterogeneity in the degree of reversion. The interaction term for high

markup firms is positive and statistically significant, with a coefficient of 0.112 in Column (1) and

0.117 in Column (3). This attenuates the overall reversion, indicating that belief updates are more

persistent for high markup firms. In contrast, the interaction terms for high markdown firms (0.047)

and high total market power firms (0.053) are positive but statistically insignificant. These results

suggest that while all firms exhibit mean reversion in LTG expectations, the process is slower and

less reactive for firms with strong product market power. Beliefs about high markup firms adjust

more sluggishly, consistent with more persistent narratives or extrapolation dynamics.

Finally, we turn to the relationship between expectations and realized outcomes by estimating

return predictability. Specifically, we estimate:

s

∑
k=1

ri,t+k = ∑
j∈D

(
βReturn

1,j ∆Ẽt
[
gi,t+s

]
+ βReturn

2,j Ẽt−1
[
gi,t+s

])
× 1{i ∈ j}+ Z⊺

i,tγ + ε i,t+s, (24)

11Table A7 in Appendix A.2 presents the results with only a NAICS2 fixed effect for robustness.
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Table 4: 5-Year Return Predictability (NAICS2 × Month FE)

Future Return (5-Year)
(1) (2) (3) (4)

LTG Revision -0.377 -0.470 -0.453 -0.466
(0.072) (0.066) (0.077) (0.066)

LTG Revision × High Markup -0.338 -0.267
(0.236) (0.246)

LTG Revision × High Markdown 0.473 0.457
(0.124) (0.130)

LTG Revision × High Total Market Power 0.466
(0.132)

LTG (Lag 1) -0.863 -0.975 -0.941 -0.966
(0.103) (0.105) (0.108) (0.105)

LTG (Lag 1) × High Markup (Lag 1) -0.426 -0.355
(0.224) (0.224)

LTG (Lag 1) × High Markdown (Lag 1) 0.643 0.612
(0.201) (0.202)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.553
(0.208)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE No No No No
Observations 340,000 340,000 340,000 340,000

Notes: This table presents regressing 5-year future returns against LTG revisions and
lagged LTG along with interactions. All specifications include NAICS2 × month fixed
effects. Column (1) presents the specification with only an interaction for high markup
firms. Column (2) presents the specification with only an interaction for high markdown
firms. Column (3) presents the specification with interactions with both high markup
and high markdown firms. Column (4) presents the specification with an interaction
with high market power firms. Standard errors are reported in parentheses and are two-
way clustered by firm and year. All figures are rounded in accordance with U.S. Census
disclosure requirements.

where the outcome is the cumulative realized return over the next five years. This specification

mirrors Equation (25) but focuses on the realized return response to expectations and their revisions.

Following Bordalo et al. (2024a), we also estimate a version using predicted forecast errors as a

regressor:
s

∑
k=1

ri,t+k = ∑
j∈D

βReturn
1,j F̂Ei,t × 1{i ∈ j}+ Z⊺

i,tγ + ε i,t+s, (25)

where F̂Ei,t is the fitted value from the forecast error regression in Column (3) of Table 2.

Tables 4 and 5 present the results.12 Consistent with the forecast error analysis, higher LTGs are

12Tables A8 to A10 in Appendix A.2 present robustness checks including a firm fixed effect and using three-year
returns instead of five-year returns, respectively.
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Table 5: 5-Year Return Predictability (NAICS2 × Month FE; Instrumented)

Future Return (5-Year)
(1) (2) (3) (4)

Predicted Forecast Error 0.643 0.681 0.670 0.671
(0.109) (0.108) (0.109) (0.107)

Predicted Forecast Error × High Markup 0.151 0.126
(0.158) (0.159)

Predicted Forecast Error × High Markdown -0.281 -0.274
(0.133) (0.133)

Predicted Forecast Error × High Total Market Power -0.150
(0.142)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE No No No No
Observations 244,000 244,000 244,000 244,000

Notes: This table presents regressing 5-year future returns against predicted five-year fore-
cast errors along with interactions. All specifications include NAICS2 × month fixed effects.
Column (1) presents the specification with only an interaction for high markup firms. Col-
umn (2) presents the specification with only an interaction for high markdown firms. Column
(3) presents the specification with interactions with both high markup and high markdown
firms. Column (4) presents the specification with an interaction with high market power firms.
Standard errors are reported in parentheses and are two-way clustered by firm and year. All
figures are rounded in accordance with U.S. Census disclosure requirements.

associated with lower subsequent realized returns and exhibit predictable reversals. In Column

(3) of Table 4, the coefficient on the lagged LTG is −0.941, and that on the LTG revision is −0.453,

both statistically significant. These findings are consistent with the classic overreaction framework:

firms with higher growth expectations tend to underperform, leading to a predictable negative

relationship between expectations and future returns.

The interaction terms reveal heterogeneity in return predictability across firm types. For high

markup firms, the interactions are small and statistically insignificant, again suggesting that their

return dynamics do not systematically differ from baseline firms. In contrast, high markdown and

high total market power firms exhibit attenuated return predictability. For example, the interaction

term on lagged LTG for high markdown firms is 0.643, and for high total market power firms is

0.553, both significant and offsetting a meaningful portion of the baseline coefficient. These results

align with earlier findings: for these firms, expectations are less negatively related to subsequent

realized performance, suggesting either less overreaction or stronger realized fundamentals.

Table 5 provides further support by linking predicted forecast errors to future returns. The fitted

forecast error is positively associated with realized returns, with a coefficient of 0.643 in Column

(1). This implies that firms expected to exhibit more overreaction—i.e., firms with high predicted

forecast errors—tend to deliver stronger future returns. This pattern is consistent with the idea that

overly pessimistic expectations about certain firms subsequently reverse, generating excess returns.
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Taken together, these findings reinforce the broader interpretation: forecast errors, belief dy-

namics, and returns are tightly linked in the cross-section. Overreaction is pervasive in the data,

but its severity varies systematically with firm-level market power. Firms with high labor or overall

market power exhibit attenuated overreaction, both in expectations and in realized returns. In

contrast, firms with high product market power (markup) do not display meaningful differences in

predictability relative to the baseline, but do exhibit more persistent expectations and slower belief

reversion. These results underscore the importance of distinguishing between different sources of

market power when interpreting the informational content of expectations and their implications

for asset prices.

4 Calibration of Diagnostic Expectations

We now examine which values of the model parameters introduced in Section 3.1 can rationalize

the empirical findings presented in Section 3.2. We also explore the economic intuition behind

these patterns, focusing on how different configurations of belief distortions map to the observed

heterogeneity. The rest of the section proceeds as follows: Section 4.1 presents various comparative

statics exercises to build intuition for the model’s predictions as well as understand parameter

identification, and Section 4.2 estimates the structural parameters using the empirical moments.

4.1 Comparative Statics and Identification

We focus on two key parameters of the diagnostic expectations model: the reaction parameter θ

and the persistence of the belief distortion ρζ . These govern the strength and duration of biased

responses to news, and together they shape the dynamic properties of subjective expectations.

Given the tight mapping between these parameters and the regression coefficients in Equations (19)

and (20), we examine the comparative statics of these coefficients with respect to θ and ρζ . For this

initial analysis, we fix the total variance of the expectation shock σs
u and the true persistence of

earnings growth ρg, since variation in θ and ρζ provides a more direct explanation for the empirical

patterns of interest. We elaborate further on this interpretation in the estimation results below, and

also examine the comparative statics with respect to ρg later in this section.

Table 6 reports how the model-implied regression coefficients vary with the reaction parameter

θ and the persistence of the belief distortion ρζ , fixing σu = 0.02 and ρg = 0.4. We first examine the

role of θ by comparing Columns (1) to (3) and Columns (2) to (4), which hold ρζ fixed at 0.3 and

0.2, respectively, while lowering θ from 5.0 to 4.0. Across both comparisons, we observe that the

coefficients βFE
1 increase from −0.833 to −0.799, and βFE

2 from −0.781 to −0.740 in Columns (1) to

(3). In Columns (2) to (4), βFE
1 increases from −0.833 to −0.799 and βFE

2 increases from −0.751 to

−0.706. These results indicate that forecast errors become less systematically biased. The revision

regression coefficient βRev
1 also becomes less negative, increasing from −0.207 to −0.199 in Columns

(1) to (3), and from −0.413 to −0.396 in Columns (2) to (4). These patterns are consistent with the
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Table 6: Comparative Statics of Regression Coefficients

Reg. Coef. θ = 5.0, ρζ = 0.3 θ = 5.0, ρζ = 0.2 θ = 4.0, ρζ = 0.3 θ = 4.0, ρζ = 0.2
(1) (2) (3) (4)

βFE
1 -0.833 -0.833 -0.799 -0.799

βFE
2 -0.781 -0.751 -0.740 -0.706

βRev
1 -0.207 -0.413 -0.199 -0.396

Notes: This table presents a simple comparative statics of β1, β2, and γ1. We set ρg = 0.4,
σu = 0.02, and s = 5 in all examples. Each column represents a distinct (θ, ρζ) pair. Col-
umn (1) sets θ = 5 and ρζ = 0.3; Column (2) changes ρζ to 0.2 holding θ fixed; Column
(3) changes θ to 4 holding ρζ = 0.3 fixed; Column (4) changes both to θ = 4, ρζ = 0.2.

interpretation that a smaller θ reduces the amplification of news, thereby dampening predictable

return reversals and slowing the reversion of expectations.

Next, we examine the role of belief distortion persistence by comparing Columns (1) to (2) and

Columns (3) to (4), which hold θ fixed while lowering ρζ from 0.3 to 0.2. In both cases, the coefficient

βFE
1 remains unchanged at −0.833 and −0.799, respectively, while βFE

2 increases from −0.781 to

−0.751 and from −0.740 to −0.706, indicating that as belief distortions decay more quickly, the

magnitude of predictable forecast errors diminishes. The stability of βFE
1 reflects the fact that belief

distortion decay affects the persistence of biased expectations, but not their initial impact. In other

words, ρζ governs how long distorted beliefs continue to influence returns, whereas the on-impact

response is determined primarily by θ. As a result, βFE
1 , which captures the immediate link between

belief revisions and returns, remains largely unchanged, while βFE
2 , which reflects the predictive

power of lagged expectations, declines in magnitude as ρζ falls. Similarly, the revision regression

coefficient βRev
1 becomes substantially more negative from −0.207 to −0.413 in Columns (1) to

(2), and from −0.199 to −0.396 in Columns (3) to (4). These results imply a sharper reversion of

long-term growth expectations. Together, these changes show that lower ρζ leads to distortions

that decay faster.

To visualize how βFE
1 varies more continuously with the reaction parameter θ, Figure 1 plots its

value over the range θ ∈ [0, 8.5] for three fixed values of distortion persistence, ρζ ∈ {0, 0.1, 0.2},

holding all other parameters constant. Similarly, Figure 2 shows how βFE
1 varies with ρζ ∈ [0, 0.3],

for fixed values of θ ∈ {1, 4, 7}. Together, Figures 1 and 2 show that βFE
1 is strongly decreasing in θ,

while it is essentially unaffected by ρζ . These patterns corroborate the comparative statics in Table 6,

confirming that θ governs the strength of on-impact forecast bias, whereas ρζ plays little role.

Figures A1 to A4 in Appendix A.1 plot βFE
1 against the reaction parameter θ and belief distortion

persistence ρζ for various values of the true earnings growth persistence ρg, as well as against ρg

for different fixed values of θ and ρζ . These figures further confirm that only θ meaningfully affects

βFE
1 ; both ρζ and ρg have minimal impact.

We now turn to βFE
2 , the coefficient on lagged expectations in the forecast error regression in
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Figure 1: Effect of Overreaction θ on βFE
1 , Across Belief Persistence ρζ
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Notes: This figure reports the comparative statics of βFE
1 with respect to θ, holding ρg = 0.4,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of ρζ : the blue line uses
ρζ = 0, the orange line uses ρζ = 0.1, and the red line uses ρζ = 0.2.

Figure 2: Effect of Belief Persistence ρζ on βFE
1 , Across Overreaction Levels θ
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Notes: This figure reports the comparative statics of βFE
1 with respect to ρζ , holding ρg = 0.4,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of θ: the blue line uses
θ = 1, the orange line uses θ = 4, and the red line uses θ = 7.
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Figure 3: Effect of Overreaction θ on βFE
2 , Across Belief Persistence ρζ
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Notes: This figure reports the comparative statics of βFE
2 with respect to θ, holding ρg = 0.4,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of ρζ : the blue line uses
ρζ = 0, the orange line uses ρζ = 0.1, and the red line uses ρζ = 0.2.

Figure 4: Effect of Belief Persistence ρζ on βFE
2 , Across Overreaction Levels θ
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Notes: This figure reports the comparative statics of βFE
2 with respect to ρζ , holding ρg = 0.4,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of θ: the blue line uses
θ = 1, the orange line uses θ = 4, and the red line uses θ = 7.
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Figure 5: Effect of Overreaction θ on βRev
1 , Across Belief Persistence ρζ
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Notes: This figure reports the comparative statics of βRev
1 with respect to θ, holding ρg = 0.4,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of ρζ : the blue line uses
ρζ = 0, the orange line uses ρζ = 0.1, and the red line uses ρζ = 0.2.

Equation (19), which captures the persistence of belief-driven forecast errors beyond the initial

revision. Figures 3 and 4 plot βFE
2 against θ for various values of ρζ , and against ρζ for various

values of θ, respectively. In both cases, βFE
2 decreases as either θ or ρζ increases, consistent with the

comparative statics in Table 6 and the model’s intuition: stronger or more persistent belief distor-

tions lead to more pronounced and predictable forecast biases. Figures A5 to A8 in Appendix A.1

plot βFE
2 against the reaction parameter θ and belief distortion persistence ρζ for various values of

the true earnings growth persistence ρg, as well as against ρg for different fixed values of θ and ρζ .

These figures show that ρg has a modest positive effect on βFE
2 . As the true growth process becomes

more persistent, belief distortions that also persist generate forecasts that are less biased over time.

In other words, having more persistent fundamentals can help offset the bias in forecasts.

Finally, we examine βRev
1 , the coefficient on lagged LTG expectations in the LTG revision

regression in Equation (20), which reflects the strength in which expectations revert. Figures 5

and 6 plot βRev
1 against θ for various values of ρζ , and against ρζ for various values of θ, respectively.

Both figures confirm the earlier findings: βRev
1 becomes more negative as θ increases, but less

negative as ρζ increases. Stronger overreaction leads to sharper reversals in expectations, while

more persistent belief distortions slow the reversion process. Figures A9 to A12 in Appendix A.1

plot βRev
1 against the reaction parameter θ and belief distortion persistence ρζ for various values of

the true earnings growth persistence ρg, as well as against ρg for different fixed values of θ and ρζ .
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Figure 6: Effect of Belief Persistence ρζ on βRev
1 , Across Overreaction Levels θ
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Notes: This figure reports the comparative statics of βRev
1 with respect to ρζ , holding ρg = 0.4,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of θ: the blue line uses
θ = 1, the orange line uses θ = 4, and the red line uses θ = 7.

As ρg increases βRev
1 becomes more negative, indicating more mean reversion. A more persistence

true fundamental means that on average means that the true process mean reverts faster, which on

average produces news that eventually reverts the biased expectations.

Given these comparative statics results, we now turn to the estimation of the structural pa-

rameters using empirical moments. The insights developed above not only illustrate how each

parameter influences the regression coefficients, but also clarify which empirical patterns provide

identification. These relationships guide and validate our estimation and inform the interpretation

of the fitted parameters in the next section.

4.2 Parameter Estimation

We estimate the parameters (θ, ρζ , ρg, σu) separately for three groups of firms: those with high

product market power (high markups), those with high labor market power (high markdowns),

and a residual group comprising the remainder of the sample. Estimation is based on the empirical

values of βFE
1 , βFE

2 , and βRev
1 . To identify ρg and σu, we supplement these regressions by estimating

the AR(1) process for realized long-term earnings growth and by matching the model-implied

variance of LTG revisions to its empirical counterpart. Together, this yields five moments for each

firm group, which we use to estimate four parameters per group. This results in a system with

15 moments and 12 parameters across the three groups, yielding overidentifying restrictions that
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Table 7: Realized LTG AR1 (NAICS2 × Year FE)

Realized LTG
(1) (2) (3) (4)

Realized LTG (Lag 1) 0.363 0.372 0.369 0.373
(0.014) (0.012) (0.013) (0.012)

Realized LTG (Lag 1) × High Markup (Lag 1) 0.027 0.021
(0.033) (0.033)

Realized LTG (Lag 1) × High Markdown (Lag 1) -0.056 -0.054
(0.028) (0.028)

Realized LTG (Lag 1) × High Total Market Power (Lag 1) -0.065
(0.032)

NAICS2 FE No No No No
NAICS2 × Year FE Yes Yes Yes Yes
Firm FE No No No No
Observations 22,000 22,000 22,000 22,000

Notes: This table presents regressing future LTG revisions against lagged LTG along with in-
teractions. All specifications include NAICS2 × year fixed effects. Column (1) presents the
specification with only an interaction for high markup firms. Column (2) presents the specifica-
tion with only an interaction for high markdown firms. Column (3) presents the specification
with interactions with both high markup and high markdown firms. Column (4) presents the
specification with an interaction with high market power firms. Standard errors are reported in
parentheses and are two-way clustered by firm and year. All figures are rounded in accordance
with U.S. Census disclosure requirements.

allow us to assess model fit.

Tables 7 and 8 report regression estimates used to recover two key empirical moments: the AR(1)

coefficient of the real long-term growth (LTG) process, and the cross-sectional standard deviation

of LTG revisions, respectively. In Table 7, we compute the realized 5-year average earnings growth

rate for each firm and regress it on its lag, interacted with indicators for high-markup and high-

markdown firms. We focus on Column (3) to recover estimates of the AR(1) parameter, which

captures the persistence of the underlying earnings growth process.

Table 8 exploits the monthly frequency of IBES forecasts to compute firm-level standard devia-

tions of LTG revisions at the annual level. These firm-year measures are merged into the annual

panel and regressed on indicators for high-markup and high-markdown firms under various fixed

effects specifications. As the results are broadly consistent across specifications, we rely on the

estimates from Column (1) for simplicity.

These empirical moments serve as inputs into the model-based estimation. Since the model

yields closed-form expressions for all targeted moments, we estimate the structural parameters

Θ by minimizing the nonlinear least squares distance between empirical and model-implied

moments. Let m(Θ) denote the vector of model-implied moments and m̂ the corresponding
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Table 8: LTG Revision SD

LTG Revision SD
(1) (2) (3) (4)

Intercept 0.016
(0.001)

High Markup -0.001 0.000 -0.000 -0.001
(0.001) (0.001) (0.001) (0.001)

High Markdown -0.003 -0.003 -0.002 -0.002
(0.001) (0.001) (0.001) (0.001)

NAICS2 FE No Yes No No
NAICS2 × Year FE No No Yes Yes
Firm FE No No No Yes
Observations 35,500 35,500 35,500 35,500

Notes: This table presents regressing annual LTG revi-
sion SD against dummies for high markup and high
markdown firms. Column (1) presents the specification
without any fixed effects. Column (2) presents the speci-
fication with NAICS2 fixed effects. Column (3) presents
the specification with NAICS2 × year fixed effects. Col-
umn (4) presents the specification with NAICS2 × year
and firm fixed effects. Standard errors are reported in
parentheses and are two-way clustered by firm and year.
All figures are rounded in accordance with U.S. Census
disclosure requirements.

empirical estimates. The parameter vector Θ̂ solves

Θ̂ = arg min
Θ

(m(Θ)− m̂)⊺ W (m(Θ)− m̂) , (26)

where W is a symmetric, positive semi-definite weighting matrix estimated using a clustered

bootstrap procedure, following Horowitz (2001) and Cameron and Miller (2015). Additional details

on the estimation procedure are provided in Appendix D.

Table 9 reports the parameter estimates and bootstrap standard errors for each firm group;

note that the persistence parameters and variances are estimated at the annual level. The results

differences across groups, particularly in the overreaction parameter θ and the persistence of belief

distortions ρζ . High markup firms exhibit the strongest overreaction, with θ = 8.101, and the most

persistent distortions, with ρζ = 0.258. In contrast, high markdown firms display the weakest

overreaction (θ = 5.009) and the least persistent distortions (ρζ = 0.135). Baseline firms fall between

these extremes on both dimensions. The parameters governing the persistence of the earnings

growth process ρg and volatility of total news σu are more similar across groups, with only modest

variation in the persistence of fundamentals.
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Table 9: Estimation of Diagnostic Expectations Parameters

Baseline High Markup High Markdown

Estimate Standard Error Estimate Standard Error Estimate Standard Error
(1) (2) (3) (4) (5) (6)

θ 6.649 0.816 8.101 5.014 5.009 2.743
ρζ 0.163 0.008 0.258 0.028 0.135 0.024
ρg 0.399 0.012 0.387 0.039 0.304 0.031
σu 0.023 0.008 0.001 0.010 0.019 0.046

Notes: This table presents the estimated model parameters (θ, ρζ , ρg, σu) using the regres-
sion coefficients as moments. Columns (1) and (2) contain the estimate and standard error,
respectively for the baseline firm. Columns (3) and (4) contain the estimate and standard
error, respectively for the high markup firms. Columns (5) and (6) contain the estimate
and standard error, respectively for the high markdown firms. Standard errors are com-
puted via the Delta method following Hansen (1982), Hansen and Singleton (1982), and
Newey and McFadden (1994).

Table 10: Model vs. Data Moment Comparison

Baseline High Markup High Markdown

Model Data Model Data Model Data
(1) (2) (3) (4) (5) (6)

βRev
1 -0.511 -0.504 -0.297 -0.387 -0.462 -0.457

βFE
1 -0.847 -0.829 -0.879 -0.790 -0.815 -0.811

βFE
2 -0.727 -0.848 -0.784 -0.844 -0.681 -0.684

ρg 0.399 0.369 0.387 0.390 0.304 0.315
SD[∆LTGi,t] 0.001 0.016 0.000 0.016 0.000 0.013

Notes: This table presents the model implied moments and com-
pares them with the empirical moments. Columns (1) and (2) show
the model implied moments and the data moments, respectively,
for the baseline case. Columns (3) and (4) show the model implied
moments and the data moments, respectively, for the high markup
case. Columns (5) and (6) show the model implied moments and
the data moments, respectively, for the high markdown case.

We report the model-implied moments alongside their empirical counterparts in Table 10.

Overall, the estimated parameters generate model moments that closely match the data. As shown

in the comparative statics analysis in Section 4.1, since neither ρζ nor ρg have a significant impact on

βFE
1 , the parameter θ is primarily identified by βFE

1 . The AR(1) regression of realized LTG determines

ρg. Conditional on these, the residual variation in βFE
2 and βRev

1 largely identifies ρζ . Finally, in the

expressions for the regression coefficients, σu cancels out in both the numerator and denominator,

implying that its level is identified directly from the volatility of LTG revisions.
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Given this identification strategy and the model’s ability to match observed moments, the

estimated values of θ are striking in magnitude. The firm-level overreaction parameters are

an order of magnitude larger than prior estimates at the aggregate level, indicating substantial

overreaction relative to the size of new information. For example, Bordalo, Gennaioli and Shleifer

(2018) estimate θ = 0.91 in the U.S. investment-grade corporate bond market, while Bordalo et al.

(2019) report similar values when comparing firms with high versus low LTG expectations in

response to aggregate sentiment shocks. At the macroeconomic level, Bordalo et al. (2020) find an

average θ = 0.5 across forecast revisions.

A distinctive feature of our analysis is the focus on firm-level expectations, rather than aggregate

or portfolio-level dynamics. Conceptually, this parallels the literature on idiosyncratic versus

aggregate volatility, where firm-level return volatility far exceeds market-level volatility (e.g.,

Campbell et al., 2001). In the same way, overreaction in expectations may be more pronounced at

the micro level, reflecting firms’ exposure to idiosyncratic noise or behavioral biases. More broadly,

the literature documents wide variation in the degree of over- or underreaction depending on the

level of aggregation, information sets, and identification strategies employed (e.g., Coibion and

Gorodnichenko, 2015; Kohlhas and Walther, 2021; Broer and Kohlhas, 2024).13

5 Macro-Finance Model with Diagnostic Expectations

In this section, we develop a simple macro-finance model in partial equilibrium that incorporates

diagnostic expectations and heterogeneous firms. We investigate whether a simple model with

these features can generate standard asset pricing and macroeconomic moments as well as generate

predictable return reversals. Then we study potential implications of the model given its fit.

The model features firms that differ in their productivity, market power, and belief distortions,

the latter captured through diagnostic expectation parameters. We abstract from household be-

havior and general equilibrium channels to focus on firm-level dynamics and isolate the effects

of distorted beliefs on outcomes such as investment, capital accumulation, and asset returns. The

model also allows us to examine macroeconomic distortions such as misallocation, following the

spirit of Hsieh and Klenow (2009) and David, Schmid and Zeke (2022). We first describe the

environment and firm problem, then turn to the aggregation concept and calibration strategy.

5.1 Environment

There is a unit mass of atomistic firms indexed by i, each belonging to one of J discrete types.

Let Nj denote the fixed mass of firms of type j, where ∑J
j=1 Nj = 1. Firms are representative within

type, and we denote by j(i) the type of firm i. Firms operate as local monopolists in their product

markets and local monopsonists in their labor markets, while capital markets are assumed to be

13See Angeletos, Huo and Sastry (2021) for a comprehensive review.
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competitive. Each firm type is characterized by a fixed tuple of parameters governing technology,

market power, and belief distortions.

Given their market power in both product and labor markets, firms face exogenous residual

demand and labor supply curves. For simplicity, firms are unlevered and issue a single security.

Output is sold to a competitive final goods producer, who aggregates heterogeneous firm-level

production into a single final consumption good that serves as the numeraire. Time is discrete and

indexed by t.

5.2 Firms

Each firm accumulates physical capital ki,t and hires labor li,t to produce output yi,t according

to the Cobb-Douglas production function

yi,t = ωi,tk
α
i,tl

1−α
i,t , (27)

where ωi,t is the firm’s Hicks-neutral productivity level, and α ∈ (0, 1) is the capital share. Produc-

tivity evolves as a stationary AR(1) process

ln ωi,t = ρω ln ωi,t−1 + (1 − ρω) ln ω̄j(i) + τi,t, (28)

where ρω ∈ (0, 1) governs persistence, ω̄j(i) is the type-specific mean productivity, and τi,t ∼
N (0, σ2

τ) is an i.i.d. shock.

Firms face exogenous CES residual product demand and labor supply curves

yi,t = p
−ε j(i)
i,t , (29)

li,t = w
ηj(i)
i,t , (30)

where pi,t is the firm’s price, ε j(i) > 1 is the product demand elasticity, wi,t is the offered wage, and

ηj(i) > 0 is the labor supply elasticity.14 These elasticities are type-specific. Equations (29) and (30)

imply constant price markups and wage markdowns given by

µj(i) =
ε j(i)

ε j(i) − 1
, (31)

νj(i) =
ηj(i) + 1

ηj(i)
. (32)

14Tables A11 to A16 in Appendix A.2 report estimates of the persistence of price markups, wage markdowns, and
the total wedge across various specifications. All results indicate that firm-level market power is highly persistent.
For tractability, we therefore assume constant markups and markdowns at the firm level. For more on homothetic
aggregators that generalize CES demand and allow for endogenous firm-level variation in price markups and wage
markdowns, see Matsuyama and Ushchev (2017) and Matsuyama (2025).
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Capital evolves according to the standard law of motion

ki,t+1 = (1 − δ)ki,t + ii,t, (33)

where δ ∈ (0, 1) is the depreciation rate and ii,t denotes investment. Firms face convex capital

adjustment costs given by

ϕ(ii,t, ki,t) =
ψ

2

(
ii,t

ki,t
− δ

)2

ki,t, (34)

where ψ > 0 is a scaling parameter governing the size of adjustment frictions. The firm’s current-

period dividends are therefore

πi,t = pi,tyi,t − wi,tli,t − ii,t − ϕ(ii,t, ki,t). (35)

The firm’s dynamic problem is given by

Vi(ωi,t, ζi,t, ki,t) = max
li,t,ii,t

πi,t + βẼt
[
Vi(ωi,t+1, ζi,t+1, ki,t+1)

]
subject to

yi,t = ωi,tk
α
i,tl

1−α
i,t ,

yi,t = p
−ε j(i)
i,t ,

li,t = w
ηj(i)
i,t ,

ki,t+1 = (1 − δ)ki,t + ii,t,

(36)

where Ẽt[·] denotes diagnostic expectations conditional on information at time t, and β ∈ (0, 1)

is the discount factor. The belief distortion ζi,t follows an AR(1) process as in Equation (17), with

type-specific persistence ρζ,j(i) and innovation ui,t = θj(i)ρωτi,t.

Finally, the realized gross unlevered return of firm i in period t + 1 is

Ri,t+1 =
Vi(ωi,t+1, ζi,t+1, ki,t+1)

Vi(ωi,t, ζi,t, ki,t)− πi,t
, (37)

and the implied gross risk-free rate is R f = β−1.

Following De La O and Myers (2021) and Bordalo et al. (2024a), variation in returns is driven

entirely by cash flows or changes in beliefs about future cash flows, rather than discount rate

variation, as discount rates are constant across firms and over time. Since we relax rational

expectations, the Modigliani-Miller conditions of Modigliani and Miller (1958) need not hold, and

a simple leverage factor cannot be used to recover equity returns from firm value. We focus on

unlevered returns for tractability and to obtain conservative measures of return variation.15

15See Boldrin, Christiano and Fisher (2001) and Papanikolaou (2011) for examples of this adjustment.
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5.3 Aggregation

A representative final goods producer aggregates the vector of intermediate outputs yt into a

single final good Yt using the production technology:

Yt = F(pt, yt). (38)

This sector is competitive and we impose the accounting identity

PtYt = p⊺
t yt, (39)

where pt is the vector of firm-level prices. Without loss of generality, we normalize the price of the

final good to one, i.e., Pt = 1.

Aggregate inputs are defined as

Kt =
∫ 1

0
ki,t di, (40)

Lt =
∫ 1

0
li,t di. (41)

We define the aggregate wage as the expenditure-weighted average

Wt =
1
Lt

∫ 1

0
wi,tli,t di. (42)

Given these definitions and the firm-level production function in Equation (27), we define ag-

gregate total factor productivity (TFP) as the residual from the aggregate Cobb-Douglas production

function

Ωt =
Yt

Kα
t L1−α

t
. (43)

5.4 Calibration

Before evaluating the model’s quantitative performance, we outline the calibration strategy. We

set J = 3 to reflect our empirical strategy: (i) normal firms, (ii) high markup firms, and (iii) high

markdown firms. The model is solved under two informational assumptions: one with diagnostic

expectations, using estimated belief distortion parameters from Section 4.2, and one with rational

expectations, corresponding to the special case where θj(i) = 0 for all i ∈ [0, 1].16 The model is

calibrated and solved at the annual level.

Table 11 presents the parameter values that are common across all firm types and model variants.

We set the capital intensity in production to α = 0.3, consistent with standard values in the macro

and growth literature. Under competitive markets, this implies a labor share of 0.7. The discount

16Appendix E for the computational method to solve this model numerically.
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Table 11: Common Parameters

Parameter Description Value

α Input Intensity of Capital 0.3
β Subject Time Discount Rate 0.96
δ Depreciation Rate of Capital 0.1
ρω Productivity Persistence 0.5319
στ Productivity Innovation SD 0.01
ψ Capital Adjustment Cost 5

Notes: This table presents the parameter values
that are common across all model specifications.

Table 12: Persistence of Productivity (NAICS2 × Year and Firm FEs)

Log Labor Productivity
(1) (2) (3) (4)

Log Labor Productivity (Lag 1) 0.532 0.536 0.501 0.505
(0.018) (0.018) (0.014) (0.013)

Log Labor Productivity (Lag 2) 0.084 0.088
(0.012) (0.012)

Log Sale (Lag 1) -0.017 -0.026
(0.008) (0.009)

NAICS2 FE No No No No
NAICS2 × Year FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Observations 60,000 60,000 52,500 52,500

Notes: This table presents various specifications regressing the log
labor productivity onto its own lags and various controls. All specifi-
cations include NAICS2 × year and firm fixed effects. Column (1)
presents an AR(1) specification. Column (2) adds the first lag of log
sales as a control. Column (3) estimates an AR(2) specification, and
Column (4) adds the first lag of log sales to the AR(2) model. Stan-
dard errors are reported in parentheses and are two-way clustered
by firm and year. All figures are rounded in accordance with U.S.
Census disclosure requirements.

factor β = 0.96 corresponds to an annual risk-free rate of approximately 4%, in line with common

asset pricing and macroeconomic calibrations. The depreciation rate δ = 0.1 reflects standard

estimates of physical capital depreciation.

The productivity process is moderately persistent, with ρω = 0.5319, and features innovation

volatility στ = 0.01, which is consistent with the calibration of Kydland and Prescott (1982) and

King, Plosser and Rebelo (1988). Table 12 reports productivity persistence estimates under various

fixed effects specifications. We also present additional specifications in Table A17 in Appendix A.2.
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Table 13: Varying Parameters under Diagnostic Expectations

Parameter Description Normal High Markup High Markdown

θ Overreaction 6.649 8.101 5.009
ρζ Belief Distortion Persistence 0.163 0.258 0.135
ε Product Demand Elasticity 10 8 12
η Labor Supply Elasticity 4 8 2
ω̄ Productivity Level 2.574 1 7.765
N Firm Count 2000 250 250

Notes: This table presents the parameters under diagnostic expectations across normal,
high markup, and high markdown firm types.

Table 14: Varying Parameters under Rational Expectations

Parameter Description Normal High Markup High Markdown

θ Overreaction 0 0 0
ρζ Belief Distortion Persistence NA NA NA
ε Product Demand Elasticity 10 8 12
η Labor Supply Elasticity 4 8 2
ω̄ Productivity Level 2.574 1 7.765
N Firm Count 2000 250 250

Notes: This table presents the parameters under rational expectations across normal,
high markup, and high markdown firm types.

Our preferred specification includes firm fixed effects to capture differences in unconditional firm-

level productivity means. We take the estimate from Column (1) of Table 12, which most closely

aligns with the structure of the productivity process in our model.

Finally, the capital adjustment cost parameter ψ = 5 is set to smooth investment dynamics and

prevent excessive volatility in capital accumulation. This value lies within the range commonly

used in models with convex adjustment costs.17

Tables 13 and 14 report the parameters that vary across firm types under both diagnostic

expectations (DE) and rational expectations (RE). For the DE specification, the belief distortion

parameters θ and ρζ are taken from the estimated values in Table 9. The product demand and

labor supply elasticities are chosen to target varying levels of market power across types. These

imply price markups and wage markdowns of 1.11 and 1.25 for normal firms, 1.14 and 1.13 for

high markup firms, and 1.09 and 1.50 for high markdown firms, respectively. These patterns reflect

the empirical negative relationship between price markups and wage markdowns, as well as the

relative dispersion in market power across firms, as documented in Ren and Zhang (2025).18

The type-specific mean productivity levels ω̄ are set to match observed heterogeneity in firm

17See Hayashi (1982); Abel and Eberly (1996, 1999); Jermann (1998); Cooper (2006); Cooper and Haltiwanger (2006);
and Bloom (2009) for further discussion on capital adjustment costs and their applications in finance and macroeconomics.

18See also Tables A2 and A3 in Appendix A.2 for regression results from Ren and Zhang (2025).
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Figure 7: Productivity Cross-Sectional Dispersion
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Notes: This figure reports the difference between the 90th percentile and 50th percentile log labor
productivity (blue line) and the difference between the 50th percentile and 10th percentile log labor
productivity (orange line) across time. All figures are rounded in accordance with U.S. Census
disclosure requirements.

productivity. Specifically, we assign values based on the difference between the 90th and 50th

percentiles and the 50th and 10th percentiles of log labor productivity in the year 2000. Figure 7

plots the time series of these cross-percentile differences. We align these relative productivity levels

with firm types following the empirical findings of Ren and Zhang (2025), who document that

firm-level productivity is positively correlated with wage markdowns and negatively correlated

with price markups. The resulting values imply that high markdown firms are 7.8 times more

productive than high markup firms, and that normal firms are 2.6 times more productive than high

markup firms. Finally, we set the relative firm counts across types to reflect our empirical strategy

of focusing on firms in the top decile of price markups and wage markdowns, while ensuring

that the total firm mass is consistent with the approximate number of publicly traded firms in the

United States.

6 Quantitative Results

This section presents the quantitative implications of the model described in Section 5, based

on the calibration strategies outlined in Section 5.4. We evaluate the model’s ability to replicate

key moments in the data and examine how the presence of diagnostic expectations alters both

firm-level behavior and aggregate dynamics relative to the benchmark rational expectations case.
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Table 15: Firm-Level Model vs. Empirical Moments

Baseline Firms High Markup High Markdown

Statistic Model Data Model Data Model Data

I/K Ratio 0.100 0.099 0.101 0.036 0.100 0.097
Labor Share 0.504 0.678 0.544 0.765 0.428 0.493
Dividend / Profit Rate 0.304 0.224 0.262 0.199 0.377 0.410
Return (1 yr) 0.098 0.232 0.138 0.304 0.064 0.140

Notes: This table presents the various real and financial moments from the
data and the model. Columns (1) and (2) show the moments for the model
and data moments, respectively for normal firms. Columns (3) and (4) show
the same for high-markup firms and Columns (5) and (6) show the same for
high-markdown firms.

The rest of this section is organized as follows: Section 6.1 focuses on firm-level outcomes and

Section 6.2 turns to aggregate dynamics.

6.1 Firm-Level Results

We simulate a panel of 2,500 firms (comprising of 2,000 baseline firms, 250 high-markup firms,

and 250 high-markdown firms) using the parameter configurations outlined in Tables 13 and 14.

Each firm is simulated over 200 periods (years), and the productivity process is assumed to evolve

independently across firms. This abstraction isolates the idiosyncratic component of firm dynamics,

allowing us to cleanly identify how diagnostic expectations alter firm-level behavior in the absence

of macroeconomic shocks. In Section 6.2, we introduce an aggregate productivity shock and assess

the model’s predictions under partial equilibrium aggregation.

Table 15 shows the moments comparing the data with the model at the firm-level. The model is

able to generate the correct cross-sectional patterns for various real variables (investment-to-capital

ratio, labor share, dividend/profit rate) as well as returns. The model, is also able to generate

substantial returns despite it being an otherwise standard production model. The subjective time

discount factor is fixed at β = 0.96, implying an annual net risk-free rate of approximately 4.2%.

This implies that all firm types generate substantial risk premia. While the standard model under

rational expectations struggles to generate substantial risk premia, as emphasized by Mehra and

Prescott (1985), Hansen and Jagannathan (1991), Jermann (1998), and Boldrin, Christiano and Fisher

(2001), under diagnostic expectations it is able to generate these easily.

First, we examine the response of returns across all firm types with respect to a positive

productivity shock to evaluate whether the model can generate not only high excess returns but

also predictable reversals. Figure 8 reports the impulse responses of gross returns across firm types.

All firm types display volatile returns and predictable reversals, consistent with the empirical

evidence in Section 3.2. Figure 9 plots the difference in returns between high-markup and high-
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Figure 8: Impulse Response of Return – Across Firm Types
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Notes: This figure reports the impulse response function of returns for all firms. The blue line
denotes normal firms, the orange line denotes high-markup firms, and the red line denotes the
high-markdown firms. The shock is a 1 SD positive productivity shock.

Figure 9: Difference in Returns Across Firm Types
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Notes: This figure reports the differences in returns in response to a 1 SD positive productivity
shock relative to normal firms. The blue line denotes the difference for high-markup firms and the
orange line denotes the difference for high-markdown firms.
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Figure 10: Impulse Response of Return – Normal Firms (DE vs. RE)
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Notes: This figure reports the impulse response function of returns for normal firms. The blue
line denotes IRF under diagnostic expectations and the orange line shows the IRF under rational
expectations. The shock is a 1 SD positive productivity shock.

markdown firms relative to normal firms in response to the shock. On impact, realized returns rise

sharply, peaking between 20% and 30%, before reversing and reaching troughs between −15% and

−10%. High-markup firms exhibit the most pronounced reversal, whereas high-markdown firms

display the mildest, which is also consistent with the data.

Figure 10 presents the IRFs of return for normal firms under both diagnostic expectations (blue

line) and rational expectations (orange line).19 This figure shows that the model with RE cannot

generate high excess and volatile returns as expected. Furthermore, it cannot generate a predictable

reversal, instead returns are very smooth and are close to the risk-free rate.

We next consider alternative specifications in which either the degree of overreaction is fixed

or market power is fixed while overreaction varies. Figure 11 shows the IRF of gross returns for

a high-markup firm under two values of θ. The blue line corresponds to the estimated level of

overreaction, while the orange line reports the response when θ is set to the value estimated for

normal firms. Figure 12 shows the difference in returns across these specifications: with higher

overreaction, the initial return is 8.6 percentage points higher, while the reversal peaks at 3.1

percentage points lower. Thus, greater overreaction produces more volatile returns and deeper

reversals, in line with the data.

Finally, Figure 13 reports the difference in returns relative to normal firms for high-markup

19Figures A13 and A14 show the IRFs for returns for high-markup and high markdown firms, respectively, in
Appendix A.1.
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Figure 11: Impulse Response of Return – High-Markup Firm Different Overreaction Levels
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Notes: This figure reports the impulse response function of returns for high-markup firms across
different levels of overreaction. The blue line denotes the case in which overreaction is set at the
high level (the estimated level for high-markup firms). The orange line denotes the case in which
overreaction is set at the low level (the medium value among the three estimated values).

Figure 12: Difference in Returns Across Firm Types Fixing Market Power
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Notes: This figure reports the difference in returns in response to a 1 SD positive productivity shock
between high and low overreaction levels for high-markup firms.
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Figure 13: Difference in Returns Across Firm Types Fixing Overreaction
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Notes: This figure reports the differences in returns in response to a 1 SD positive productivity
shock relative to normal firms while fixing the level of overreaction to that of normal firms for all
firms. The blue line denotes the difference for high-markup firms and the orange line denotes the
difference for high-markdown firms.

and high-markdown firms when the overreaction parameter θ is fixed at the level estimated for

normal firms. This isolates the role of heterogeneity in market power for predictable returns under

diagnostic expectations. For high-markup firms, the on-impact difference is nearly 4 percentage

points, with the reversal peaking at about 2 percentage points. For high-markdown firms, the

on-impact return is almost 5 percentage points lower, while the peak reversal is 2.7 percentage

points smaller. These results indicate that differences in market power significantly affect both

return levels and predictability. Nevertheless, variation in overreaction remains the more important

driver of return dynamics.

Next we examine various real outcomes to understand the model’s performance for real

variables as well as how those feed into the return dynamics. Figure 14 shows the IRFs across all

firm types for various real outcomes. In general we find that high-markup firms respond the most

and high-markdown firms respond the least (with the exception of wages). One stark difference

is the sharp boom-bust of investment rising from 15% to 35% before crashing. This is driven by

diagnostic expectations as firms become overly optimistic and invest too much and have inflated

valuations. However, that quickly dissipates but the elevated capital level persists generating the

more persistent effect on other real variables such as output or profits.

Figure 15 shows the IRFs for the same real outcomes as Figure 14 but only for normal firms and
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Figure 14: Impulse Response Function: All Firms under DE (1 SD Productivity Shock)
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Notes: This figure reports the impulse response functions for all firms under diagnostic expectations.
The blue line represents normal firms, the orange line represents high-markup firms, and the red
line represents high-markdown firms. Panel (a) presents output, panel (b) presents investment,
panel (c) presents employment, panel (d) presents dividend, panel (e) presents wage, and panel (f)
presents profit. The shock is a one standard deviation positive productivity shock.
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Figure 15: Impulse Response Function: Normal Firms (1 SD Productivity Shock)
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Notes: This figure reports the impulse response functions for normal firms under both diagnostic
expectations (blue lines) and rational expectations (orange lines). Panel (a) presents output, panel (b)
presents investment, panel (c) presents employment, panel (d) presents dividend, panel (e) presents
wage, and panel (f) presents profit. The shock is a one standard deviation positive productivity
shock.
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Table 16: Aggregate-Level Model vs. Empirical Mo-
ments

Statistic Model DE Model RE Data
(1) (2) (3)

I/K Ratio 0.100 0.100 0.092
Labor Share 0.500 0.500 0.668
Dividend Rate 0.307 0.307 0.240
Return (1 yr) 0.098 0.042 0.131
Return (5 yr) 0.318 0.130 0.656
Return SD (1 yr) 0.365 0.002 0.168
Return SD (5 yr) 0.483 0.006 0.377

Notes: This table presents

comparing the IRFs for the models with DE and RE (blue line and orange line, respectively).20 The

model with DE exhibits more pronounced responses and more hump-shaped dynamics relative to

the model with RE. For example, for output the model with DE has a peak response of 2.5% that

occurs in the second period after the shock whereas the model with RE has a peak response of 2.0%

that occurs in the first period after the shock. Moreover the boom-bust pattern of investment that

the model with DE demonstrates explains partly why the model with DE is able to generate the

high excess returns and predictable reversals. The hump-shaped dynamics is also qualitatively

consistent with the empirically estimated IRFs in macroeconomics.

6.2 Aggregate Results

We now examine the aggregate response of the economy to a common productivity shock in

partial equilibrium. Aggregated outcomes are constructed using the definitions in Equations (38)

to (43), as outlined in Section 5.3. In addition to standard macroeconomic aggregates, we evaluate

several measures of resource misallocation, including the dispersion of marginal products of capital

(MPK), following the frameworks of Hsieh and Klenow (2009), Restuccia and Rogerson (2008), and

David, Schmid and Zeke (2022). This allows us to assess how belief distortions affect not only the

dynamics of macro aggregates, but also the efficiency of capital allocation across heterogeneous

firms.

Table 16 shows various moments at the aggregate level comparing the data with model the

model with diagnostic expectations and the model with rational expectations. In the aggregate,

these results confirm that while various real moments on average are similar across both DE and

RE, the model with DE can generate substantial excess returns and return volatility whereas the

model with RE cannot.

20Figures A15 and A16 in Appendix A.1 show the IRFs comparing DE and RE for high-markup firms and high-
markdown firms, respectively. Figures A17 to A19 in Appendix A.1 show the IRFs comparing DE and RE for normal,
high-markup, and high-markdown firms, respectively, for a negative productivity shock.
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Figure 16: Impulse Response Function: Aggregate (1 SD Productivity Shock)
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Notes: This figure reports the aggregate impulse response functions under both diagnostic expec-
tations (blue lines) and rational expectations (orange lines). Panel (a) presents output, panel (b)
presents investment, panel (c) presents employment, panel (d) presents dividend, panel (e) presents
wage, and panel (f) presents profit. The shock is a one standard deviation positive productivity
shock.
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Figure 17: Impulse Response Function: Aggregate Misallocation (1 SD Productivity Shock)
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Notes: This figure reports the aggregate impulse response functions under both diagnostic expecta-
tions (blue lines) and rational expectations (orange lines). Panel (a) presents the standard deviation
of MPK, panel (b) presents the standard deviation of MPL, and panel (c) presents aggregate pro-
ductivity.
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Figures 16 and 17 present the aggregate impulse responses of key macroeconomic variables and

misallocation measures, respectively, to a one standard deviation positive aggregate productivity

shock. For completeness, Figures A24 and A25 in Appendix A.1 show the corresponding IRFs for a

negative shock. As expected, the aggregate responses in Figure 16 broadly mirror the firm-level

dynamics discussed earlier, with diagnostic expectations inducing greater amplification and more

pronounced hump-shaped adjustments relative to rational expectations. Financial returns under

diagnostic expectations, like the firm-level results, exhibit predictable reversals.

To assess misallocation, Figures 17a and 17b display the evolution of the cross-sectional standard

deviation in firms’ marginal products of capital (MPK) and labor (MPL), respectively. Figure 17c

shows the evolution of aggregate productivity. On impact MPK and MPL dispersion as well as

aggregate productivity respond the same since the differences in capital investment only impact

static outcomes starting in the second period. Interestingly, MPK dispersion under diagnostic

expectations declines more rapidly from its peak than under rational expectations. This occurs

because the overreaction in investment driven by extrapolative beliefs pushes MPKs downward

across all firms, mechanically compressing the cross-sectional dispersion despite underlying hetero-

geneity.21 In this sense, diagnostic expectations may reduce apparent misallocation as measured by

MPK dispersion not through improved efficiency but as a mechanical outcome of excessive capital

accumulation. In contrast, MPL dispersion does not exhibit the same mechanical compression

effect. Instead, dispersion remains elevated for a longer period under diagnostic expectations,

reflecting persistent heterogeneity in labor demand responses across firms driven by extrapolative

beliefs along with heterogenous market power.

Finally, we turn to aggregate productivity to more directly assess the overall efficiency implica-

tions of belief distortions and to compare the extent of misallocation across the two belief regimes.

Following the initial impact, aggregate productivity in the model with diagnostic expectations falls

below that in the rational expectations benchmark. Notably, under diagnostic expectations, aggre-

gate productivity even declines below its pre-shock level. This decline is driven by the combination

of excessive overinvestment induced by extrapolative beliefs and its interaction with heterogeneous

market power. High markup firms despite being the least productive have the lowest total market

power and the strongest overreaction to shocks. As a result, a positive productivity shock induces

them to expand disproportionately, contributing to a decline in aggregate productivity. In contrast,

high markdown firms are the most productive but also have the highest total market power and

exhibit the weakest response to the shock. Their relatively muted expansion limits the reallocation

of resources toward the most efficient producers, exacerbating misallocation and further depressing

aggregate productivity. Importantly, this asymmetric responsiveness is already present under

rational expectations due to the dampening effect of market power on firm-level adjustment. The

distribution of overreaction across firms amplify this pre-existing pattern by magnifying overre-

action where it is least efficient and muting it where greater expansion would be most beneficial,

21See Figure A26 in Appendix A.1 which shows the firm-level IRFs for MPK and MPL.
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Figure 18: Relative Difference in Aggregate TFP
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Notes: This figure reports the relative differences in aggregate TFP between the model with diag-
nostic expectations and the model with rational expectations. The blue line reports the differences
under a -2 SD productivity shock from the steady state. The orange line reports the differences
under -1 SD productivity shock fromt the steady state. The green and purple lines report the same
but for a 1 and 2 SD shock productivity, respectively.

worsening the aggregate efficiency loss.

Figure 18 compares the relative aggregate productivity outcomes under diagnostic and rational

expectations across a range of common productivity shocks, varying in both magnitude and

direction. The figure reports the percentage difference in aggregate TFP between the two belief

regimes following −2, −1, +1, and +2 standard deviation shocks. Consistent with the IRF

presented in Figure 17c, aggregate productivity under diagnostic expectations is persistently

lower following a one standard deviation positive shock (green line), with a peak shortfall of

approximately 0.24% that decays slowly over time. For a two standard deviation shock (purple

line), the shortfall rises to around 0.49%. In contrast, diagnostic expectations generate productivity

gains relative to rational expectations in response to negative shocks, with peak improvements

of roughly 0.21% and 0.41% for −1 and −2 standard deviation shocks (blue and orange lines),

respectively.

The modest asymmetry in productivity responses reflects both curvature in the future capital

policy function and, more importantly, the interaction between belief distortions and heterogeneous

market power. Firms with low total market power despite being less productive exhibit stronger

overreaction to shocks, while highly productive firms with high market power adjust more modestly.

This imbalance limits capital reallocation toward the most efficient producers during expansions,
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Figure 19: Relative Difference in Aggregate TFP to RE and One Firm Type
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Notes: This figure reports the relative differences in aggregate TFP between various models and
the model with rational expectations and one firm type. The blue line represents the model
with rational expectations with heterogenous firms. The orange line represents the model with
diagnostic expectations and heterogenous firms. The red line represents the model with diagnostic
expectations that are common but the remaining firm characteristics are varing. The green, purple,
and cyan lines represent the model with one type of firm under various specifications of diagnostic
expectations.

exacerbating misallocation and depressing aggregate productivity. This mechanism dampens

the procyclical capital reallocation channel identified by Eisfeldt and Rampini (2006) and David,

Schmid and Zeke (2022).

To further decompose these dynamics, we benchmark additional model variants against a

rational expectations economy with homogeneous firms. This baseline matches the steady-state

aggregates of the heterogeneous-firm models by appropriately calibrating the representative firm’s

productivity, price markup, and wage markdown.22 We then explore four extensions: (i) heteroge-

neous firms under rational expectations, (ii) heterogeneous firms under diagnostic expectations,

(iii) diagnostic expectations that are common across firms but with heterogeneous market power,

and (iv) diagnostic expectations with homogeneous firms and varying levels of overreaction. This

richer comparison allows us to disentangle the separate roles of diagnostic beliefs, heterogeneous

market power, and heterogeneity in overreaction in shaping aggregate misallocation dynamics.

Figure 19 shows the relative difference in aggregate productivity across model variants, bench-

marked against the rational expectations model with homogeneous firms. Figures 19a and 19b

display the responses to a positive and negative productivity shock, respectively. The blue line

corresponds to the rational expectations model with heterogeneous firms, and the orange line to

the diagnostic expectations model with heterogeneous firms. In both cases, aggregate productivity

falls relative to the baseline following a positive shock, reflecting increased misallocation as less

productive firms with lower market power expand more rapidly.

Under rational expectations with heterogeneous firms, the productivity shortfall peaks imme-

22Following our empirical definitions, we use the revenue-weighted aggregate price markup and wage-bill-weighted
aggregate wage markdown.
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diately at −0.25% before decaying quickly. In contrast, under diagnostic expectations, the peak

is larger and more delayed. It reaches −0.33% in the second period, which is consistent with the

amplification mechanism discussed earlier. For negative shocks, the rational expectations model

exhibits a nearly symmetric improvement in aggregate productivity. The diagnostic expectations

model also shows qualitative symmetry, though the magnitudes differ modestly.

The red line depicts a variant with diagnostic expectations and heterogeneous market power, but

where all firms share the same intermediate level of overreaction. The resulting peak misallocation

is slightly smaller at −0.32%, indicating that while diagnostic beliefs amplify misallocation through

market power, additional amplification from heterogeneity in overreaction is relatively modest.

Finally, the green, purple, and cyan lines represent models with diagnostic expectations and

homogeneous market power, across different fixed levels of overreaction. In these cases, aggregate

productivity closely follows the rational expectations benchmark. Since all firms respond identically,

belief distortions do not generate misallocation. This highlights that it is the interaction between

distorted expectations and heterogeneous firm characteristics, especially market power, that drives

the efficiency losses observed in this environment. It is also important to emphasize that the

analysis thus far is conducted in partial equilibrium, which provides intuition for the misallocation

channels but abstracts from general equilibrium adjustments.

In general equilibrium, the implications depend on how aggregate price levels adjust. With a

homothetic aggregator, even in the presence of heterogeneous firms, there is no cyclical misalloca-

tion: all prices adjust proportionally, which cancels out at the aggregate level.23 Even when firms

overreact to shocks, if that overreaction is homogeneous across all firms, the aggregate price level

adjusts proportionally, and the general equilibrium outcome exhibits no cyclical misallocation.

By contrast, when firms differ both in their degree of market power and in the extent of their

belief-driven overreaction, aggregate prices no longer adjust in a way that fully offsets firm-level

distortions. In this case, heterogeneous distorted expectations and heterogeneous market power

jointly generate cyclical efficiency losses. Moreover, the correlation structure between productivity,

market power, and belief distortions determines the sign of the effect: if low-productivity, low-

market-power firms are those that overreact most, the result is procyclical misallocation, as we

find in the data. If instead the opposite correlation holds, the misallocation channel becomes

countercyclical. Hence, only when both heterogeneity in market power and heterogeneity in

overreaction are present does cyclical misallocation survive in general equilibrium.

We now turn to welfare, where the results should be understood as quantifying the partial

equilibrium channels emphasized above. While the general equilibrium logic implies that misal-

location vanishes under homothetic aggregation unless both heterogeneous market power and

heterogeneous belief distortions are present, the PE analysis provides a clean benchmark to as-

sess the efficiency costs and asymmetries of these mechanisms. We assume that households are

23This applies not only to the canonical CES aggregator but also to more general homothetic forms such as those
developed by Matsuyama and Ushchev (2017); Matsuyama (2023, 2025). See also Berger, Herkenhoff and Mongey (2022)
for an example of how aggregate shocks are simplified in a general equilibrium setting with homothetic aggregators.
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Table 17: Consumption-Equivalent Welfare Gains (Shocks ±1σ)

Regime γ = 1, -1σ γ = 1, +1σ γ = 2, -1σ γ = 2, +1σ γ = 4, -1σ γ = 4, +1σ

RE (hetero) -0.022 0.022 -0.022 0.022 -0.023 0.021
DE (hetero) -0.094 0.102 -0.094 0.101 -0.095 0.101
DE (θ=mid, hetero) -0.087 0.093 -0.087 0.093 -0.087 0.092
DE (θ=low, 1 type) 0.000 0.000 0.000 0.000 -0.000 -0.000
DE (θ=mid, 1 type) 0.000 0.000 -0.000 0.000 -0.000 0.000
DE (θ=high, 1 type) 0.000 0.000 -0.000 0.000 -0.000 -0.000

Notes: This table reports consumption-equivalent welfare gains in percent for ±1σ productivity
shocks relative to the case of rational expectations and homogenous firms. The columns corre-
spond to the specified γ and shock value.

endowed with CRRA preferences, given by

U0 =
∞

∑
t=0

βt C1−γ
t

1 − γ
, (44)

where the coefficient of relative risk aversion γ ∈ {1, 2, 4}, and aggregate consumption Ct is defined

using the accounting identity Ct = Yt − It.

To compute the consumption-equivalent adjustment, let Ũ0,T denote the finite-horizon utility

from the benchmark consumption path {C̃t}
T
t=0, generated by the rational expectations model

with homogeneous firms given the shock. Let U0,T denote the corresponding utility from an

alternative model with consumption path {Ct}
T
t=0, for a fixed horizon T. We set T = 150. The

consumption-equivalent loss or gain λ is defined implicitly by

T

∑
t=0

βt (Ct(1 + λ))1−γ

1 − γ
= Ũ0,T. (45)

For all γ > 0, Equation (45) admits a unique solution for λ. When λ > 0, households would require

a permanent percentage increase in consumption to be indifferent between the alternative and the

benchmark model, implying that the benchmark (rational expectations with homogeneous firms)

yields higher utility. Conversely, λ < 0 indicates a welfare gain under the alternative model relative

to the benchmark.

Table 17 reports the consumption-equivalent welfare gains or losses expressed in percentage

terms relative to the rational expectations model with homogeneous firms, across the various model

specifications, shock directions, and values of γ. Welfare losses are generally stable across risk

aversion levels. In the rational expectations model with heterogeneous firms, eliminating firm

heterogeneity yields a welfare gain equivalent to at least a 0.02% increase in lifetime consumption

following a positive shock, and at least a 0.02% loss following a negative shock.24 These values

24Table A18 shows the consumption-equivalent welfare changes for the case of shocks ±2σ.
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are broadly comparable to the canonical estimates in Lucas (1987) for the welfare cost of aggregate

business cycle fluctuations.

In contrast, the model with diagnostic expectations and heterogeneous firms generates sub-

stantially larger welfare losses, at least 0.09% in expansions and −0.10% in recessions, due to the

amplified misallocation effects driven by belief distortions. The incremental welfare cost from

heterogeneity in overreaction (relative to the case with uniform overreaction) is approximately

0.007 percentage points. While this amplification is significant compared to the benchmark rational

expectations model, it remains modest in absolute terms. As expected, there is no welfare difference

when diagnostic expectations are applied in a homogeneous firm setting, since misallocation does

not arise.

These results indicate that diagnostic expectations, when interacting with heterogeneous firms,

particularly those with differing degrees of market power, can generate substantially larger welfare

losses or gains over the business cycle due to amplified misallocation, relative to the benchmark

of rational expectations with homogeneous firms. While this analysis abstracts from explicit

policy design, the findings suggest that accounting for belief distortions and firm heterogeneity is

important for understanding the efficiency costs of business cycle fluctuations. In particular, the

asymmetric and persistent nature of the misallocation effects highlights the potential value of future

work examining how informational frictions and behavioral biases shape aggregate outcomes in

environments with market power and capital reallocation dynamics.

7 Conclusion

We study how heterogeneity in firm-level market power relates to heterogeneity in belief

distortions and overreaction. This link is motivated by recent evidence that subjective cash-flow

expectations explain much of the variation in asset returns, and that market power is a central

driver of firm cash flows and profits. Empirically, firms with high price markups—those with

greater product market power—exhibit the strongest overreaction, while firms with high wage

markdowns—those with greater labor market power—exhibit the weakest. Excess optimism and

pessimism are short-lived on average but more persistent among high-markup firms, and firm-level

overreaction is substantially larger than at the aggregate level.

Motivated by these findings, we embed calibrated diagnostic expectations and their relationship

to firm characteristics in a simple macro-finance model in partial equilibrium. The model shows that

subjective cash-flow expectations alone—without variation in discount rates—can generate elevated

and more volatile returns within an endogenous production setting. It also produces hump-shaped

real dynamics and predictable return reversals following excessive optimism, consistent with

empirical patterns. A decomposition of returns confirms that heterogeneity in belief distortions

drives both the excess and predictable responses, as well as cross-sectional variation in performance.

Although heterogeneity in market power also contributes, differences in overreaction play the
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dominant role in explaining the cross-section of financial returns.

The model further implies that the interaction between diagnostic expectations and heteroge-

neous market power amplifies procyclical misallocation. Under rational expectations, heterogeneity

in market power alone generates misallocation in the steady state. Following an aggregate shock

in partial equilibrium, we find procyclical misallocation, magnified by diagnostic expectations

through overreaction. The additional amplification due to their negative correlation with market

power, though modest, reinforces the effect. In general equilibrium, however, cyclical misallocation

survives only when both heterogeneity in market power and heterogeneity in overreaction are

present. With a homothetic aggregator, heterogeneous market power is insufficient to generate

cyclical misallocation, and when overreaction is homogeneous, proportional price adjustments

offset firm-level distortions exactly. With heterogeneous overreaction, however, price adjustments

are no longer proportional, and the result persists. Moreover, the correlation structure between

productivity, market power, and overreaction determines the sign of the effect: if low-productivity,

low-market-power firms overreact more, misallocation is procyclical; if the reverse holds, it becomes

countercyclical.

While highly stylized, the model replicates several key asset pricing and macroeconomic

moments that a comparable rational expectations framework fails to match. At the same time,

it generates counterfactual predictions, such as an abrupt dividend decline following a positive

productivity shock and Sharpe ratios that remain too low. These limitations suggest that extensions

incorporating financial frictions, adjustment costs, or richer belief dynamics may be necessary to

better align the model with the data.

Overall, the results show that belief distortions rooted in diagnostic expectations can amplify

firm- and aggregate-level dynamics through their interaction with heterogeneous market power.

This mechanism links micro-level belief heterogeneity to macro-level misallocation and welfare

costs, offering a unified behavioral channel through which expectations shape both asset prices and

real outcomes. Future work embedding these mechanisms in a full general equilibrium framework

could further clarify how belief distortions and market power jointly shape business-cycle dynamics

and asset-price behavior.
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A Additional Figures and Tables

A.1 Figures

Figure A1: Effect of Overreaction θ on βFE
1 , Across Growth Persistence ρg
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Notes: This figure reports the comparative statics of βFE
1 with respect to θ, holding ρζ = 0.2,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of ρg: the blue line uses
ρg = 0.30, the orange line uses ρg = 0.35, and the red line uses ρg = 0.40.

59



Figure A2: Effect of Belief Persistence ρζ on βFE
1 , Across Growth Persistence ρg

−0.8571

−0.8570

−0.8569

−0.8568

−0.8567

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ρζ

β 1F
E

 ρg = 0.3 ρg = 0.35 ρg = 0.4

Notes: This figure reports the comparative statics of βFE
1 with respect to ρζ , holding θ = 6, σu = 0.02,

and s = 5 fixed. Each line corresponds to a different fixed value of ρg: the blue line uses ρg = 0.30,
the orange line uses ρg = 0.35, and the red line uses ρg = 0.40.

Figure A3: Effect of Growth Persistence ρg on βFE
1 , Across Overreaction θ
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Notes: This figure reports the comparative statics of βFE
1 with respect to ρg, holding ρζ = 0.2,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of θ: the blue line uses
θ = 1, the orange line uses θ = 4, and the red line uses θ = 7.
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Figure A4: Effect of Growth Persistence ρg on βFE
1 , Across Belief Persistence ρζ
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Notes: This figure reports the comparative statics of βFE
1 with respect to ρg, holding θ = 6, σu = 0.02,

and s = 5 fixed. Each line corresponds to a different fixed value of ρζ : the blue line uses ρζ = 0, the
orange line uses ρζ = 0.1, and the red line uses ρζ = 0.2.

Figure A5: Effect of Overreaction θ on βFE
2 , Across Growth Persistence ρg
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Notes: This figure reports the comparative statics of βFE
2 with respect to θ, holding ρζ = 0.2,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of ρg: the blue line uses
ρg = 0.30, the orange line uses ρg = 0.35, and the red line uses ρg = 0.40.
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Figure A6: Effect of Belief Persistence ρζ on βFE
2 , Across Growth Persistence ρg
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Notes: This figure reports the comparative statics of βFE
2 with respect to ρζ , holding θ = 6, σu = 0.02,

and s = 5 fixed. Each line corresponds to a different fixed value of ρg: the blue line uses ρg = 0.30,
the orange line uses ρg = 0.35, and the red line uses ρg = 0.40.

Figure A7: Effect of Growth Persistence ρg on βFE
2 , Across Overreaction θ
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Notes: This figure reports the comparative statics of βFE
2 with respect to ρg, holding ρζ = 0.2,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of θ: the blue line uses
θ = 1, the orange line uses θ = 4, and the red line uses θ = 7.
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Figure A8: Effect of Growth Persistence ρg on βFE
2 , Across Belief Persistence ρζ
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Notes: This figure reports the comparative statics of βFE
2 with respect to ρg, holding θ = 6, σu = 0.02,

and s = 5 fixed. Each line corresponds to a different fixed value of ρζ : the blue line uses ρζ = 0, the
orange line uses ρζ = 0.1, and the red line uses ρζ = 0.2.

Figure A9: Effect of Overreaction θ on βRev
1 , Across Growth Persistence ρg
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Notes: This figure reports the comparative statics of βRev
1 with respect to θ, holding ρζ = 0.2,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of ρg: the blue line uses
ρg = 0.30, the orange line uses ρg = 0.35, and the red line uses ρg = 0.40.
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Figure A10: Effect of Belief Persistence ρζ on βRev
1 , Across Growth Persistence ρg
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Notes: This figure reports the comparative statics of βRev
1 with respect to ρζ , holding θ = 6,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of ρg: the blue line uses
ρg = 0.30, the orange line uses ρg = 0.35, and the red line uses ρg = 0.40.

Figure A11: Effect of Growth Persistence ρg on βRev
1 , Across Overreaction θ
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Notes: This figure reports the comparative statics of βRev
1 with respect to ρg, holding ρζ = 0.2,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of θ: the blue line uses
θ = 1, the orange line uses θ = 4, and the red line uses θ = 7.
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Figure A12: Effect of Growth Persistence ρg on βRev
1 , Across Belief Persistence ρζ
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Notes: This figure reports the comparative statics of βRev
1 with respect to ρg, holding θ = 6,

σu = 0.02, and s = 5 fixed. Each line corresponds to a different fixed value of ρζ : the blue line uses
ρζ = 0, the orange line uses ρζ = 0.1, and the red line uses ρζ = 0.2.

Figure A13: Impulse Response of Return – High-Markup Firms (DE vs. RE)
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Notes: This figure reports the impulse response function of returns for high-markup firms. The blue
line denotes IRF under diagnostic expectations and the orange line shows the IRF under rational
expectations. The shock is a 1 SD positive productivity shock.
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Figure A14: Impulse Response of Return – High-Markdown Firms (DE vs. RE)
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Notes: This figure reports the impulse response function of returns for high-markdown firms.
The blue line denotes IRF under diagnostic expectations and the orange line shows the IRF under
rational expectations. The shock is a 1 SD positive productivity shock.
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Figure A15: Impulse Response Function: High-Markup Firms (1 SD Productivity Shock)
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Notes: This figure reports the impulse response functions for high-markup firms under both
diagnostic expectations (blue lines) and rational expectations (orange lines). Panel (a) presents
output, panel (b) presents investment, panel (c) presents employment, panel (d) presents dividend,
panel (e) presents wage, and panel (f) presents profit. The shock is a one standard deviation positive
productivity shock.
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Figure A16: Impulse Response Function: High-Markdown Firms (1 SD Productivity Shock)
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Notes: This figure reports the impulse response functions for high-markdown firms under both
diagnostic expectations (blue lines) and rational expectations (orange lines). Panel (a) presents
output, panel (b) presents investment, panel (c) presents employment, panel (d) presents dividend,
panel (e) presents wage, and panel (f) presents profit. The shock is a one standard deviation positive
productivity shock.
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Figure A17: Impulse Response Function: Normal Firms (-1 SD Productivity Shock)
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Notes: This figure reports the impulse response functions for normal firms under both diagnostic
expectations (blue lines) and rational expectations (orange lines). Panel (a) presents output, panel
(b) presents investment, panel (c) presents employment, panel (d) presents dividend, panel (e)
presents wage, and panel (f) presents profit. The shock is a one standard deviation negative
productivity shock.
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Figure A18: Impulse Response Function: High-Markup Firms (-1 SD Productivity Shock)
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Notes: This figure reports the impulse response functions for high-markup firms under both
diagnostic expectations (blue lines) and rational expectations (orange lines). Panel (a) presents
output, panel (b) presents investment, panel (c) presents employment, panel (d) presents dividend,
panel (e) presents wage, and panel (f) presents profit. The shock is a one standard deviation
negative productivity shock.
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Figure A19: Impulse Response Function: High-Markdown Firms (-1 SD Productivity Shock)
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Notes: This figure reports the impulse response functions for high-markdown firms under both
diagnostic expectations (blue lines) and rational expectations (orange lines). Panel (a) presents
output, panel (b) presents investment, panel (c) presents employment, panel (d) presents dividend,
panel (e) presents wage, and panel (f) presents profit. The shock is a one standard deviation
negative productivity shock.
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Figure A20: Impulse Response Function: All Firms under RE (1 SD Productivity Shock)
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Notes: This figure reports the impulse response functions for all firms under rational expectations.
The blue line represents normal firms, the orange line represents high-markup firms, and the red
line represents high-markdown firms. Panel (a) presents output, panel (b) presents investment,
panel (c) presents employment, panel (d) presents dividend, panel (e) presents wage, and panel (f)
presents profit. The shock is a one standard deviation positive productivity shock.
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Figure A21: Impulse Response Function: Normal Firms (-1 SD Belief Distortion Shock)
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Notes: This figure reports the impulse response functions for normal firms under both diagnostic
expectations (blue lines) and rational expectations (orange lines). Panel (a) presents output, panel
(b) presents investment, panel (c) presents employment, panel (d) presents dividend, panel (e)
presents wage, and panel (f) presents profit. The shock is a one standard deviation negative belief
distortion shock.
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Figure A22: Impulse Response Function: High-Markup Firms (-1 SD Belief Distortion Shock)
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Notes: This figure reports the impulse response functions for high-markup firms under both
diagnostic expectations (blue lines) and rational expectations (orange lines). Panel (a) presents
output, panel (b) presents investment, panel (c) presents employment, panel (d) presents dividend,
panel (e) presents wage, and panel (f) presents profit. The shock is a one standard deviation
negative belief distortion shock.
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Figure A23: Impulse Response Function: High-Markdown Firms (-1 SD Belief Distortion Shock)
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Notes: This figure reports the impulse response functions for high-markdown firms under both
diagnostic expectations (blue lines) and rational expectations (orange lines). Panel (a) presents
output, panel (b) presents investment, panel (c) presents employment, panel (d) presents dividend,
panel (e) presents wage, and panel (f) presents profit. The shock is a one standard deviation
negative belief distortion shock.
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Figure A24: Impulse Response Function: Aggregate (-1 SD Productivity Shock)
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Notes: This figure reports the aggregate impulse response functions under both diagnostic expec-
tations (blue lines) and rational expectations (orange lines). Panel (a) presents output, panel (b)
presents investment, panel (c) presents employment, panel (d) presents dividend, panel (e) presents
wage, and panel (f) presents profit. The shock is a one standard deviation negative productivity
shock.
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Figure A25: Impulse Response Function: Aggregate Misallocation (-1 SD Productivity Shock)
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Notes: This figure reports the aggregate impulse response functions under both diagnostic expecta-
tions (blue lines) and rational expectations (orange lines). Panel (a) presents the standard deviation
of MPK, panel (b) presents the standard deviation of MPL, and panel (c) presents aggregate pro-
ductivity.
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Figure A26: Impulse Response Functions: Firm-Level Marginal Products
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Notes: This figure reports the impulse response functions of the marginal product of capital (MPK)
and marginal product of labor (MPL) for all firm types. For all panels the blue line indicates the IRF
for the case of diagnostic expectations and the orange line indicates the IRF for the case of rational
expectations. Panels (a) and (b) show the MPK and MPL, respectively, for normal firms. Panels (c)
and (d) show the MPK and MPL, respectively, for high-markup firms. Panels (e) and (f) show the
MPK and MPL, respectively, for high-markdown firms.
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A.2 Tables

Table A1: Full Compustat Sample Summary Statistics (Annual Level)

Variable Mean SD P10 P25 Median P75 P90 Obs.

(1) (2) (3) (4) (5) (6) (7) (8)

Log Sales 19.040 2.484 15.900 17.410 19.110 20.720 22.200 151,000

Log COGS 18.490 2.577 15.210 16.790 18.550 20.250 21.770 151,000

Log SGA 17.650 2.098 15.050 16.140 17.550 19.020 20.440 151,000

Log Physical Capital 17.580 2.692 14.190 15.660 17.510 19.440 21.190 151,000

Log Intangible Capital 17.750 2.150 15.080 16.200 17.640 19.130 20.620 151,000

Log Total Assets 19.080 2.396 16.040 17.390 19.050 20.710 22.230 151,000

Log Market Cap 18.640 2.522 15.510 16.810 18.530 20.380 21.980 140,000

Notes: This table presents the summary statistics of the original Compustat sample at the an-

nual level. The sample ranges from 1977 to 2019. All nominal variables are deflated using the

BEA’s GDP Price Deflator. Column (1) reports the mean, and Column (2) reports the standard

deviation. Columns (3) to (7) report the 10th percentile, 25th percentile, median, 75th percentile,

and 90th percentile, respectively. Column (8) reports the number of observations. All figures

are rounded in accordance with U.S. Census disclosure requirements. This table is directly

replicated from Ren and Zhang (2025).
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Table A2: Price Markups and Firm Characteristics (CRS)

Log Price Markup
(1) (2) (3) (4) (5) (6) (7)

Log Wage Markdown -0.104
(0.004)

Log TFPR 0.002
(0.015)

Log Labor Productivity -0.045
(0.004)

Log Sales -0.016
(0.001)

Log Wage Bill -0.001
(0.001)

Profit Share 0.007
(0.018)

Log Labor Share VA 0.044
(0.004)

NAICS2 FE No No No No No No No
NAICS2 × Year FE Yes Yes Yes Yes Yes Yes Yes
Firm FE No No No No No No No
Observations 69,500 69,500 69,000 69,500 69,500 69,500 69,500

Notes: This table reports the results from regressing log price markups onto firm charac-
teristics with NAICS2 × year fixed effects. This table shows the results for markups and
markdowns estimated with the CRS restriction. Column (1) examines log wage mark-
downs, Columns (2) and (3) analyze log TFPR and log labor productivity, Columns (4)
and (5) assess log sales and log wage bill, and Columns (6) and (7) evaluate profit share
and labor share of value-added. Standard errors are reported in parentheses and are two-
way clustered by firm and year. All figures are rounded in accordance with U.S. Census
disclosure requirements. This table is reproduced exactly from Ren and Zhang (2025).
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Table A3: Wage Markdowns and Firm Characteristics (CRS)

Log Wage Markdown
(1) (2) (3) (4) (5) (6) (7)

Log Price Markup -2.627
(0.057)

Log TFPR 1.205
(0.128)

Log Labor Productivity 0.236
(0.018)

Log Sales 0.206
(0.008)

Log Wage Bill 0.133
(0.007)

Profit Share 0.699
(0.097)

Log Labor Share VA -0.423
(0.026)

NAICS2 FE No No No No No No No
NAICS2 × Year FE Yes Yes Yes Yes Yes Yes Yes
Firm FE No No No No No No No
Observations 69,500 69,500 69,000 69,500 69,500 69,500 69,500

Notes: This table reports the results from regressing log wage markdowns onto firm char-
acteristics with NAICS2 × year fixed effects. This table shows the results for markups
and markdowns estimated with the CRS restriction. Column (1) examines log price
markups, Columns (2) and (3) analyze log TFPR and log labor productivity, Columns (4)
and (5) assess log sales and log wage bill, and Columns (6) and (7) evaluate profit share
and labor share of value-added. Standard errors are reported in parentheses and are two-
way clustered by firm and year. All figures are rounded in accordance with U.S. Census
disclosure requirements. This table is reproduced exactly from Ren and Zhang (2025).
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Table A4: 5-Year Forecast Error Predictability (NAICS2 × Year and Firm FEs)

Forecast Error (5-Year)
(1) (2) (3) (4)

LTG Revision -0.896 -0.912 -0.909 -0.911
(0.022) (0.026) (0.027) (0.026)

LTG Revision × High Markup -0.054 -0.045
(0.103) (0.104)

LTG Revision × High Markdown 0.048 0.045
(0.067) (0.068)

LTG Revision × High Total Market Power 0.044
(0.069)

LTG (Lag 1) -0.912 -0.948 -0.945 -0.948
(0.029) (0.032) (0.032) (0.031)

LTG (Lag 1) × High Markup (Lag 1) -0.057 -0.033
(0.062) (0.062)

LTG (Lag 1) × High Markdown (Lag 1) 0.166 0.163
(0.058) (0.058)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.168
(0.058)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Observations 246,000 246,000 246,000 246,000

Notes: This table presents regressing 5-year realized forecast error against LTG revisions
and lagged LTG along with interactions. All specifications include NAICS2 × month
and firm fixed effects. Column (1) presents the specification with only an interaction for
high markup firms. Column (2) presents the specification with only an interaction for
high markdown firms. Column (3) presents the specification with interactions with both
high markup and high markdown firms. Column (4) presents the specification with an
interaction with high market power firms. Standard errors are reported in parentheses
and are two-way clustered by firm and year. All figures are rounded in accordance with
U.S. Census disclosure requirements.
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Table A5: 3-Year Forecast Error Predictability (NAICS2 × Month FE)

Forecast Error (3-Year)
(1) (2) (3) (4)

LTG Revision -0.986 -0.983 -0.984 -0.984
(0.032) (0.038) (0.039) (0.038)

LTG Revision × High Markup 0.040 0.041
(0.116) (0.118)

LTG Revision × High Markdown 0.014 0.015
(0.090) (0.091)

LTG Revision × High Total Market Power 0.022
(0.096)

LTG (Lag 1) -1.231 -1.242 -1.238 -1.241
(0.037) (0.037) (0.038) (0.036)

LTG (Lag 1) × High Markup (Lag 1) -0.054 -0.044
(0.078) (0.079)

LTG (Lag 1) × High Markdown (Lag 1) 0.128 0.123
(0.071) (0.071)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.134
(0.071)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE No No No No
Observations 272,000 272,000 272,000 272,000

Notes: This table presents regressing 3-year realized forecast error against LTG revisions
and lagged LTG along with interactions. All specifications include NAICS2 × month
fixed effects. Column (1) presents the specification with only an interaction for high
markup firms. Column (2) presents the specification with only an interaction for high
markdown firms. Column (3) presents the specification with interactions with both high
markup and high markdown firms. Column (4) presents the specification with an inter-
action with high market power firms. Standard errors are reported in parentheses and
are two-way clustered by firm and year. All figures are rounded in accordance with U.S.
Census disclosure requirements.
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Table A6: 3-Year Forecast Error Predictability (NAICS2 × Year and Firm FEs)

Forecast Error (3-Year)
(1) (2) (3) (4)

LTG Revision -0.853 -0.849 -0.846 -0.851
(0.030) (0.032) (0.033) (0.032)

LTG Revision × High Markup -0.030 -0.038
(0.103) (0.105)

LTG Revision × High Markdown -0.067 -0.069
(0.112) (0.113)

LTG Revision × High Total Market Power -0.057
(0.119)

LTG (Lag 1) -0.894 -0.910 -0.908 -0.913
(0.030) (0.032) (0.033) (0.032)

LTG (Lag 1) × High Markup (Lag 1) -0.031 -0.021
(0.073) (0.073)

LTG (Lag 1) × High Markdown (Lag 1) 0.086 0.085
(0.061) (0.061)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.105
(0.063)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Observations 272,000 272,000 272,000 272,000

Notes: This table presents regressing 3-year realized forecast error against LTG revisions
and lagged LTG along with interactions. All specifications include NAICS2 × month
and firm fixed effects. Column (1) presents the specification with only an interaction for
high markup firms. Column (2) presents the specification with only an interaction for
high markdown firms. Column (3) presents the specification with interactions with both
high markup and high markdown firms. Column (4) presents the specification with an
interaction with high market power firms. Standard errors are reported in parentheses
and are two-way clustered by firm and year. All figures are rounded in accordance with
U.S. Census disclosure requirements.
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Table A7: LTG Revision Predictability (NAICS2 FE)

LTG Revision
(1) (2) (3) (4)

LTG (Lag 1) -0.483 -0.477 -0.488 -0.479
(0.038) (0.038) (0.038) (0.038)

LTG (Lag 1) × High Markup (Lag 1) 0.121 0.124
(0.064) (0.064)

LTG (Lag 1) × High Markdown (Lag 1) 0.009 0.019
(0.058) (0.058)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.028
(0.063)

NAICS2 FE Yes Yes Yes Yes
NAICS2 × Year FE No No No No
Firm FE No No No No
Observations 30,000 30,000 30,000 30,000

Notes: This table presents regressing future LTG revisions against lagged LTG along
with interactions. All specifications include NAICS2 fixed effects. Column (1) presents
the specification with only an interaction for high markup firms. Column (2) presents
the specification with only an interaction for high markdown firms. Column (3)
presents the specification with interactions with both high markup and high mark-
down firms. Column (4) presents the specification with an interaction with high
market power firms. Standard errors are reported in parentheses and are two-way
clustered by firm and year. All figures are rounded in accordance with U.S. Census
disclosure requirements.
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Table A8: 5-Year Return Predictability (NAICS2 × Year and Firm FEs)

Future Return (5-Year)
(1) (2) (3) (4)

LTG Revision -0.371 -0.432 -0.424 -0.426
(0.079) (0.076) (0.089) (0.075)

LTG Revision × High Markup -0.218 -0.166
(0.211) (0.219)

LTG Revision × High Markdown 0.277 0.270
(0.143) (0.149)

LTG Revision × High Total Market Power 0.260
(0.151)

LTG (Lag 1) -0.659 -0.730 -0.706 -0.725
(0.106) (0.113) (0.116) (0.112)

LTG (Lag 1) × High Markup (Lag 1) -0.294 -0.254
(0.198) (0.199)

LTG (Lag 1) × High Markdown (Lag 1) 0.284 0.262
(0.186) (0.186)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.252
(0.189)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Observations 340,000 340,000 340,000 340,000

Notes: This table presents regressing 5-year future returns against LTG revisions and
lagged LTG along with interactions. All specifications include NAICS2 × month and
firm fixed effects. Column (1) presents the specification with only an interaction for high
markup firms. Column (2) presents the specification with only an interaction for high
markdown firms. Column (3) presents the specification with interactions with both high
markup and high markdown firms. Column (4) presents the specification with an inter-
action with high market power firms. Standard errors are reported in parentheses and
are two-way clustered by firm and year. All figures are rounded in accordance with U.S.
Census disclosure requirements.
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Table A9: 3-Year Return Predictability (NAICS2 × Month FE)

Future Return (3-Year)
(1) (2) (3) (4)

LTG Revision -0.204 -0.245 -0.226 -0.251
(0.053) (0.054) (0.057) (0.054)

LTG Revision × High Markup -0.326 -0.309
(0.138) (0.141)

LTG Revision × High Markdown 0.177 0.162
(0.099) (0.100)

LTG Revision × High Total Market Power 0.232
(0.105)

LTG (Lag 1) -0.569 -0.638 -0.598 -0.636
(0.074) (0.075) (0.078) (0.076)

LTG (Lag 1) × High Markup (Lag 1) -0.443 -0.420
(0.158) (0.161)

LTG (Lag 1) × High Markdown (Lag 1) 0.291 0.259
(0.166) (0.165)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.256
(0.170)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE No No No No
Observations 379,000 379,000 379,000 379,000

Notes: This table presents regressing 3-year future returns against LTG revisions and
lagged LTG along with interactions. All specifications include NAICS2 × month fixed
effects. Column (1) presents the specification with only an interaction for high markup
firms. Column (2) presents the specification with only an interaction for high markdown
firms. Column (3) presents the specification with interactions with both high markup
and high markdown firms. Column (4) presents the specification with an interaction
with high market power firms. Standard errors are reported in parentheses and are two-
way clustered by firm and year. All figures are rounded in accordance with U.S. Census
disclosure requirements.

87



Table A10: 3-Year Return Predictability (NAICS2 × Year and Firm FEs)

Future Return (3-Year)
(1) (2) (3) (4)

LTG Revision -0.208 -0.239 -0.224 -0.243
(0.054) (0.054) (0.058) (0.054)

LTG Revision × High Markup -0.274 -0.259
(0.133) (0.136)

LTG Revision × High Markdown 0.101 0.087
(0.102) (0.105)

LTG Revision × High Total Market Power 0.127
(0.106)

LTG (Lag 1) -0.448 -0.503 -0.477 -0.503
(0.076) (0.080) (0.082) (0.079)

LTG (Lag 1) × High Markup (Lag 1) -0.344 -0.319
(0.148) (0.149)

LTG (Lag 1) × High Markdown (Lag 1) 0.213 0.188
(0.137) (0.137)

LTG (Lag 1) × High Total Market Power (Lag 1) 0.214
(0.136)

NAICS2 × Month FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Observations 379,000 379,000 379,000 379,000

Notes: This table presents regressing 3-year future returns against LTG revisions and
lagged LTG along with interactions. All specifications include NAICS2 × month and
firm fixed effects. Column (1) presents the specification with only an interaction for high
markup firms. Column (2) presents the specification with only an interaction for high
markdown firms. Column (3) presents the specification with interactions with both high
markup and high markdown firms. Column (4) presents the specification with an inter-
action with high market power firms. Standard errors are reported in parentheses and
are two-way clustered by firm and year. All figures are rounded in accordance with U.S.
Census disclosure requirements.

88



Table A11: Persistence of Price Markups (NAICS2 × Year FE)

Log Price Markup
(1) (2) (3) (4) (5)

Log Price Markup (Lag 1) 0.856 0.849 0.851 0.705 0.703
(0.009) (0.010) (0.010) (0.013) (0.013)

Log Price Markup (Lag 2) 0.184 0.183
(0.012) (0.012)

Log Wage Markdown (Lag 1) -0.003 -0.000 0.001
(0.001) (0.001) (0.001)

Log Sale (Lag 1) -0.002 -0.001
(0.000) (0.000)

NAICS2 FE No No No No No
NAICS2 × Year FE Yes Yes Yes Yes Yes
Firm FE No No No No No
Observations 60,500 60,500 60,500 53,000 53,000

Notes: This table presents various specifications regressing the log price
markup onto its own lags and various controls. All specifications include
NAICS2 × year fixed effects. Column (1) presents an AR(1) specification.
Column (2) adds the first lag of the log wage markdown as a control. Col-
umn (3) builds on Column (2) by further including the first lag of log sales.
Column (4) estimates an AR(2) specification, and Column (5) adds the first
lag of log sales to the AR(2) model. Standard errors are reported in paren-
theses and are two-way clustered by firm and year. All figures are rounded
in accordance with U.S. Census disclosure requirements.
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Table A12: Persistence of Price Markups (NAICS2 × Year and Firm FEs)

Log Price Markup
(1) (2) (3) (4) (5)

Log Price Markup (Lag 1) 0.585 0.580 0.579 0.531 0.531
(0.016) (0.015) (0.015) (0.016) (0.016)

Log Price Markup (Lag 2) 0.101 0.101
(0.012) (0.012)

Log Wage Markdown (Lag 1) -0.002 -0.002 0.000
(0.002) (0.002) (0.002)

Log Sale (Lag 1) -0.001 0.000
(0.002) (0.002)

NAICS2 FE No No No No No
NAICS2 × Year FE Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Observations 60,500 60,500 60,500 53,000 53,000

Notes: This table presents various specifications regressing the log price
markup onto its own lags and various controls. All specifications include
NAICS2 × year and firm fixed effects. Column (1) presents an AR(1) specifi-
cation. Column (2) adds the first lag of the log wage markdown as a control.
Column (3) builds on Column (2) by further including the first lag of log
sales. Column (4) estimates an AR(2) specification, and Column (5) adds
the first lag of log sales to the AR(2) model. Standard errors are reported
in parentheses and are two-way clustered by firm and year. All figures are
rounded in accordance with U.S. Census disclosure requirements.
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Table A13: Persistence of Wage Markdowns (NAICS2 × Year FE)

Log Wage Markdown
(1) (2) (3) (4) (5)

Log Wage Markdown (Lag 1) 0.918 0.927 0.890 0.732 0.717
(0.007) (0.008) (0.009) (0.013) (0.013)

Log Wage Markdown (Lag 2) 0.210 0.199
(0.012) (0.012)

Log Price Markup (Lag 1) 0.088 0.060 0.041
(0.026) (0.025) (0.024)

Log Sale (Lag 1) 0.025 0.021
(0.003) (0.003)

NAICS2 FE No No No No No
NAICS2 × Year FE Yes Yes Yes Yes Yes
Firm FE No No No No No
Observations 60,500 60,500 60,500 53,000 53,000

Notes: This table presents various specifications regressing the log wage
markdown onto its own lags and various controls. All specifications include
NAICS2 × year fixed effects. Column (1) presents an AR(1) specification.
Column (2) adds the first lag of the log price markup as a control. Column
(3) builds on Column (2) by further including the first lag of log sales. Col-
umn (4) estimates an AR(2) specification, and Column (5) adds the first lag
of log sales to the AR(2) model. Standard errors are reported in parentheses
and are two-way clustered by firm and year. All figures are rounded in ac-
cordance with U.S. Census disclosure requirements.
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Table A14: Persistence of Wage Markdowns (NAICS2 × Year and Firm FEs)

Log Wage Markdown
(1) (2) (3) (4) (5)

Log Wage Markdown (Lag 1) 0.627 0.621 0.598 0.552 0.529
(0.018) (0.019) (0.020) (0.017) (0.019)

Log Wage Markdown (Lag 2) 0.125 0.118
(0.013) (0.014)

Log Price Markup (Lag 1) -0.042 -0.001 -0.014
(0.039) (0.039) (0.038)

Log Sale (Lag 1) 0.070 0.064
(0.007) (0.007)

NAICS2 FE No No No No No
NAICS2 × Year FE Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Observations 60,500 60,500 60,500 53,000 53,000

Notes: This table presents various specifications regressing the log wage
markdown onto its own lags and various controls. All specifications include
NAICS2 × year and firm fixed effects. Column (1) presents an AR(1) speci-
fication. Column (2) adds the first lag of the log price markup as a control.
Column (3) builds on Column (2) by further including the first lag of log
sales. Column (4) estimates an AR(2) specification, and Column (5) adds
the first lag of log sales to the AR(2) model. Standard errors are reported
in parentheses and are two-way clustered by firm and year. All figures are
rounded in accordance with U.S. Census disclosure requirements.
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Table A15: Persistence of Total Wedge (NAICS2 × Year FE)

Log Total Wedge
(1) (2) (3) (4)

Log Total Wedge (Lag 1) 0.923 0.888 0.728 0.708
(0.008) (0.009) (0.012) (0.012)

Log Total Wedge (Lag 2) 0.220 0.209
(0.012) (0.012)

Log Sale (Lag 1) 0.023 0.019
(0.002) (0.002)

NAICS2 FE No No No No
NAICS2 × Year FE Yes Yes Yes Yes
Firm FE No No No No
Observations 60,500 60,500 53,000 53,000

Notes: This table presents various specifications regressing
the log total wedge onto its own lags and various controls. All
specifications include NAICS2 × year fixed effects. Column
(1) presents an AR(1) specification. Column (2) adds the first
lag of log sales as a control. Column (3) estimates an AR(2)
specification, and Column (4) adds the first lag of log sales to
the AR(2) model. Standard errors are reported in parentheses
and are two-way clustered by firm and year. All figures are
rounded in accordance with U.S. Census disclosure require-
ments.
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Table A16: Persistence of Total Wedge (NAICS2 × Year and Firm
FEs)

Log Total Wedge
(1) (2) (3) (4)

Log Total Wedge (Lag 1) 0.627 0.598 0.547 0.525
(0.018) (0.019) (0.017) (0.017)

Log Total Wedge (Lag 2) 0.135 0.129
(0.013) (0.014)

Log Sale (Lag 1) 0.070 0.065
(0.006) (0.006)

NAICS2 FE No No No No
NAICS2 × Year FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Observations 60,500 60,500 53,000 53,000

Notes: This table presents various specifications regressing
the log total wedge onto its own lags and various controls. All
specifications include NAICS2 × year and firm fixed effects.
Column (1) presents an AR(1) specification. Column (2) adds
the first lag of log sales as a control. Column (3) estimates
an AR(2) specification, and Column (4) adds the first lag of
log sales to the AR(2) model. Standard errors are reported in
parentheses and are two-way clustered by firm and year. All
figures are rounded in accordance with U.S. Census disclosure
requirements.
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Table A17: Persistence of Productivity (NAICS2 × Year FE)

Log Labor Productivity
(1) (2) (3) (4)

Log Labor Productivity (Lag 1) 0.844 0.832 0.699 0.693
(0.011) (0.012) (0.011) (0.011)

Log Labor Productivity (Lag 2) 0.194 0.189
(0.010) (0.010)

Log Sale (Lag 1) 0.016 0.013
(0.002) (0.002)

NAICS2 FE No No No No
NAICS2 × Year FE Yes Yes Yes Yes
Firm FE No No No No
Observations 60,000 60,000 52,500 52,500

Notes: This table presents various specifications regressing the log
labor productivity onto its own lags and various controls. All speci-
fications include NAICS2 × year fixed effects. Column (1) presents
an AR(1) specification. Column (2) adds the first lag of log sales as a
control. Column (3) estimates an AR(2) specification, and Column (4)
adds the first lag of log sales to the AR(2) model. Standard errors are
reported in parentheses and are two-way clustered by firm and year.
All figures are rounded in accordance with U.S. Census disclosure
requirements.

Table A18: Consumption-Equivalent Welfare Gains (Shocks ±2σ)

Regime γ = 1, -1σ γ = 1, +1σ γ = 2, -1σ γ = 2, +1σ γ = 4, -1σ γ = 4, +1σ

RE (hetero) -0.022 0.022 -0.022 0.022 -0.023 0.021
DE (hetero) -0.094 0.102 -0.094 0.101 -0.095 0.101
DE (θ=mid, hetero) -0.087 0.093 -0.087 0.093 -0.087 0.092
DE (θ=low, 1 type) 0.000 0.000 0.000 0.000 -0.000 -0.000
DE (θ=mid, 1 type) 0.000 0.000 -0.000 0.000 -0.000 0.000
DE (θ=high, 1 type) 0.000 0.000 -0.000 0.000 -0.000 -0.000

Notes: This table reports consumption-equivalent welfare gains in percent for ±2σ productivity
shocks relative to the case of rational expectations and homogenous firms. The columns corre-
spond to the specified γ and shock value.
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B Additional Data Information

In this section, we discuss in more detail how the final dataset and key variables are constructed

as well as the proof of Proposition 1 and a discussion of the implementation of the production

function estimation. In addition to the LBD and CRSP/Compustat Merged database, we utilize

the following publicly available data: BEA NIPA Table 1.1.9 (Bureau of Economic Analysis, 2024),

Market Yield on U.S. Treasury Securities at 1-Year Constant Maturity (Board of Governors of the

Federal Reserve System, 2024), and the CPI (Bureau of Labor Statistics, 2024). We use Lines 1 and 9

of BEA NIPA Table 1.1.9 to deflate financial statement line items, which correspond to the GDP

implicit price deflator and non-residential fixed investment implicit price deflator, respectively.

Line 9 is used for physical capital only. The 1-year U.S. Treasury data is used to proxy a one-year

nominal risk-free rate and it is deflated by the CPI. We use the annual versions of all these datasets

or convert them into annual series through averaging when we obtain them via FRED. The FRED

series IDs are provided below.

1. BEA NIPA Table 1.1.9 Line 1 – FRED Series ID: A191RD3A086NBEA

2. BEA NIPA Table 1.1.9 Line 2 – FRED Series ID: A008RD3A086NBEA

3. Market Yield on U.S. Treasury Securities at 1-Year Constant Maturity – FRED Series ID: DGS1

4. CPI – FRED Series ID: CPIAUCSL

B.1 Final Dataset Creation and Key Variable Construction

Here we provide greater detail on how the final dataset is constructed given the raw data files.

The final dataset is a merged CRSP/Compustat-LBD firm-level panel. We use the Compustat

variable name where applicable. The steps are as follows:

1. Collapse the LBD files from the establishment level to the firm level using the firm-level

identifiers

2. Merge the macroeconomic and time series datasets to the Compustat sample

3. Merge the LBD firm-level files to the Compustat sample

4. Replace the any missing values of XRD, XAD, XSGA, and XRENT with 0

5. Drop any observations without up to NAICS4 industry information

6. Generate intangible and physical capital investment and use forward iteration to generate

the stock

7. Drop observations in NAICS2 industries 22, 52, 53, 92, and 99

8. Drop observations that are missing or non-positive in SALE, COGS, XSGA, AT, and the

created capital stocks variables

9. Create the materials, profits, value-added, and labor productivity variables
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10. Trim any observations that are in bottom and top 1% by year of COGS/SALE, XSGA/SALE,

and materials/SALE. Also remove observations that are in the top 1% of XRD/SALE by year

11. Winsorize value-added, labor productivity, profit share, and investment rates at the 1% and

99% percentiles by year

12. Keep observations from 1976 onward

13. Run first-stage and second-stage estimation procedures of the production function estimation

14. Merge elasticity estimates to the current merged CRSP/Compustat-LBD panel

15. The firm-level elasticity and cost share estimates are winsorized at the 5% and 95% percentiles

since these are used in the ratio estimators to reduce the impact of extreme values

16. Compute the markups and markdowns

17. Compute firm-level TFPR

18. Remove any observations with non-positive markups or markdowns

19. Merge in the replicated panel of Bordalo et al. (2024a)

The final datasets are a firm-year panel that ranges from 1980 to 2019 as well as a firm-month panel

spanning the same range.

We proceed to discuss how key variables are constructed that are not covered in the main text.

It explains the construction of the production function inputs, including physical capital, intangible

capital, and materials. Next, it describes the computation of firm value-added, labor productivity,

labor share, and profit share. Then we discuss how to compute firm-level output elasticities and

TFPR given the production function estimates. Finally, the section explains the methodology for

creating the aggregate indices used in the analysis.

Production Function Inputs. The three remaining inputs (physical capital, intangible capital, and

materials) are not directly taken from the existing data but rather are constructed using the existing

data. Physical capital and intangible capital are both computed using a capitalization approach.

Once these are computed, we can then compute materials.

For each firm’s physical capital stock, we identify its first observation and initialize its value

to the maximum of 0 and the first year’s value of PPEGT (gross property, plant, and equipment).

Then we take the first difference of PPENT (net property, plant, and equipment) to compute net

investment and recursively define the subsequent year’s physical capital stock. We deflate physical

capital using the nonresidential fixed investment good deflator, which is line 9 of NIPA Table 1.1.9

(FRED ID: A008RD3A086NBEA). Since physical capital is recorded at the end of the year, we use

the computed physical capital for year t − 1 as the year t physical capital input in the estimation.

As an example, in our notation, ki,2000 refers to the end of 1999 end of year value of physical capital

for firm i.
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The firm’s intangible capital stock is intialized following a similar procedure used by Eisfeldt

and Papanikolaou (2013) and Peters and Taylor (2017). We define gross intangible investment as

IntInvi,t = XRDi,t + XADi,t + 0.3 × (XSGAi,t − XRDi,t − XADi,t), (A1)

where XRDi,t and XADi,t are the research and development and advertising expenses from Com-

pustat, respectively. We compute the sample median growth rate of intangible investment and

initialize each firm’s intangible capital stock as the maximum of 0 and the first year’s intangible

divided by the sum of the median growth rate plus depreciation. We set annual depreciation rate to

be 30% following Eisfeldt and Papanikolaou (2013). We deflate these values using the GDP deflator

which is from line 1 of NIPA Table 1.1.9 (FRED ID: A191RD3A086NBEA). As with physical capital,

intangible capital follows the same timing convention.

Finally, recall that we define materials as COGSi,t plus XSGAi,t less the wage bill, rent (XRENT

in Compustat), and the non-labor portion of the intangible investment. Since intangible investment

is constructed using line items that are included in COGS or SGA, we must adjust for this in the

definition of materials. Also, since we already remove the total wage bill, we only need to remove

the non-labor portion of the intangible investment. Lehr (2023) estimates the labor share of research

and development to be 79%. We use this figure and extend it for all intangible investment to

compute the non-labor share of intangible investment.

Value-Added, Labor Productivity, Labor Share, and Profit. The firm’s value-added is computed

following Donangelo et al. (2019) and Seegmiller (2023), and is given below

VAi,t = OIBDPi,t + ∆INVFGi,t + WBi,t, (A2)

where OIBDPi,t is operating income before depreciation, ∆INVFGi,t is the first difference in inven-

tories, and WBi,t is the wage bill. The changes in inventories are set to 0 when missing. Given

Equation (A2) we can compute log labor productivity and the labor share of value-added, which

are given by Equations (A3) and (A4), respectively,

ln(Labor Productivityi,t) = ln
(

VAi,t

EMPLBDi,t

)
, (A3)

LSVAi,t =
WBi,t

VAi,t
, (A4)

where EMPLBDi,t is the LBD-based employment measure.

The firm’s profit in the data is defined as

Πi,t = OIBDPi,t − (r f ,t + δ + RP)Ki,t, (A5)

where r f ,t is the real risk-free rate (1-year Treasury rate), δ = 0.1 is the annual depreciation rate
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of physical capital, RP = 0.02 a risk premium, Ki,t is the physical capital stock in real terms.

Equation (A5) follows the definition and imputations of De Loecker, Eeckhout and Unger (2020)

for comparability. The firm’s profit share is defined as the ratio of profit to sales. For the rest of the

paper and in particular Sections 5 and 6 we use a slightly different definition.

Firm-Level Output Elasticities and TFPR. We estimate translog production functions. Therefore,

the output elasticity of input j is given by

θ
j
i,t = β j + 2β j,jx

j
i,t + ∑

j′∈J \{j}
β j,j′x

j′

i,t. (A6)

We assume that β j,j′ = β j′,j for all j, j′ ∈ J . With Equation (A6) we can compute the ratio estimators

in Equations (3) and (4). Given the estimates of β, firm-level log inputs xi,t, log output yi,t, and first-

stage estimate of ε i,t, we can also recover log TFPR ωi,t from re-arranging Equation (5) evaluated at

the estimated parameters to isolate for ωi,t.

Aggregate Price Markup and Wage Markdown Indices. First we compute the NAICS2 industry-

level aggregate price markups and wage markdowns following the given weighting methodology.

Then we normalize each NAICS2 aggregate series to its 1977 value to 1. From here we aggregate

across these by taking a weighted average using the corresponding industry weights (i.e. the

sales-weighted index uses the total NAICS2 industry-level sales; the unweighted or simple index

uses the observation count as the weight). This indexation approach creates a weighted-average

growth rate and bypasses the common multiplicative bias at the NAICS2 level since production

functions are estimated at the NAICS2 level. In practice we find that this method produces very

similar results to simply normalizing the final aggregate series’ 1977 value to 1.

B.2 Proof of Proposition 1

Proof of Proposition 1. Consider the profit maximization problem of a firm that uses J > 1 inputs to

produce one output, which is given by

max
Xi,t∈R

J
++

Pi,t(Yi,t)Yi,t −
J

∑
j=1

W j
i,t(X j

i,t)X j
i,t

subject to

Yi,t ≤ F(Xi,t; ωi,t),

(A7)

where Xi,t is the vector of inputs, Pi,t(·) is the inverse demand function, Yi,t is output, W j
i,t(X j

i,t)

is the inverse supply function of input j, F(·; ·) is the production function that satisfies the usual

assumptions, and ωi,t is the firm’s Hicks-neutral log productivity. Finally, let J denote the set of
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inputs. Note that we assume that the inverse demand function of a given input j only depends on

the quantity of that input.

Then we can take the first-order condition of the problem (A7) with respect to a flexible input.

This is given by

∂Pi,t(Yi,t)Yi,t

∂X f
i,t

−
∂W f

i,t(X f
i,t)X f

i,t

∂X f
i,t

=
∂Pi,t(Yi,t)

∂Yi,t

∂Yi,t

∂X f
i,t

Yi,t + Pi,t(Yi,t)
∂Yi,t

∂X f
i,t

− W̄ f
i,t

= 0

We can rearrange this expression as follows

[
∂Pi,t(Yi,t)

∂Yi,t

Yi,t

Pi,t(Yi,t)
+ 1
]−1

=
∂Yi,t

∂X f
i,t

Pi,t(Yi,t)

W f
i,t

,

Notice that the first two terms of the product on the right-hand side is the markup that follows

the definition from (1). The expression for marginal costs follows from the dual problem (cost

minimization). The right-hand side can be further rearranged as follows

∂Yi,t

∂X f
i,t

Pi,t(Yi,t)

W f
i,t

=
∂Yi,t

∂X f
i,t

X f
i,t

Yi,t

Pi,t(Yi,t)Yi,t

W f
i,tX

f
i,t

=
θ

f
i,t

α
f
i,t

= µi,t,

which is the relationship in (3).

With the price markup and the corresponding ratio estimator recovered we can proceed to the

input markdown and its ratio estimator. The first-order condition with respect to a monopsonistic

input is given by

∂Pi,t(Yi,t)Yi,t

∂X j
i,t

−
∂W j

i,t(X j
i,t)X j

i,t

∂X j
i,t

=
∂Pi,t(Yi,t)

∂Yi,t

∂Yi,t

∂X j
i,t

Yi,t + Pi,t(Yi,t)
∂Yi,t

∂X j
i,t

−
∂W j

i,t(X j
i,t)

∂X j
i,t

X j
i,t − W j

i,t(X j
i,t)

= 0.

This expression can be rearranged as follows

[
∂Pi,t(Yi,t)

∂Yi,t

Yi,t

Pi,t(Yi,t)
+ 1
]

Pi,t(Yi,t)
∂Yi,t

∂X j
i,t

=
∂W j

i,t(X j
i,t)

∂X j
i,t

X j
i,t + W j

i,t(X j
i,t)

µ−1
i,t

W j
i,t(X j

i,t)
Pi,t(Yi,t)

∂Yi,t

∂X j
i,t

=

[
∂W j

i,t(X j
i,t)

∂X j
i,t

X j
i,t

W j
i,t(X j

i,t)
+ 1

]
.
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The left-hand side of the first line is the marginal revenue product with respect to X j
i,t; note that

with product market power the MRPL accounts for the change in price when selling one more

unit. Then on the second line, the left-hand side is the marginal revenue product of input j to the

price of input j, which is the definition of a markdown following (2). This expression can be further

changed to yield

µ−1
i,t

W j
i,t(X j

i,t)
Pi,t(Yi,t)

∂Yi,t

∂X j
i,t

=
Pi,t(Yi,t)Yi,t

W j
i,t(X j

i,t)X j
i,t

∂Yi,t

∂X j
i,t

X j
i,t

Yi,t
µ−1

i,t

=
θ

j
i,t

α
j
i,t

µ−1
i,t = ν

j
i,t,

thus we recover the relation in (4). Thus, we have proved Proposition 1.

B.3 Detailed Steps on Production Function Estimation Procedure

This section discusses the details on the implementation of the GMM procedure to estimate the

second stage. First, we discuss the moment conditions and specifically how we incorporate the

constant returns to scale (CRS) restriction. Then we discuss the procedure we utilize to address a

common numerical optimization issue.

We implement the CRS restriction similar to the method described by Yeh, Macaluso and

Hershbein (2022) and Ren and Zhang (2025). However, first we discuss how the other moment

conditions are constructed. Following the notation from Section 2.2 (in logs), we have materials

mi,t, physical capital ki,t, labor li,t, and intangible capital ni,t. We write the vector of the production

function’s parameters as

β =
(

βl , βm, βk, βn, βl,l , βl,m, βl,k, βl,n, βm,m, βm,k, βm,n, βk,k, βk,n, βn,n
)⊺ . (A8)

Next, we define the vector of instruments and then we construct the first set of moment conditions.

The vector of instruments is given by

z̃i,t =
(

z̃⊺1,i,t, z̃⊺2,i,t

)⊺
, (A9)

where

z̃1,i,t =
(
li,t−1, mi,t−1, ki,t, ni,t

)⊺ , (A10)

z̃2,i,t =
(

l2
i,t−1, li,t−1mi,t−1, li,t−1ki,t, li,t−1ni,t,

m2
i,t−1, mi,t−1ki,t, mi,t−1ni,t, k2

i,t, ki,tni,t, n2
i,t

)⊺
. (A11)

Notice that in Equations (A9) to (A11) we impose a timing assumption for identification. Following
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the standard assumptions, we assume that the firm observes their idiosyncratic productivity shock

ξi,t and then make their input decisions. However, since the current stock of physical and intangible

capital are assumed to be chosen in the period before, their current value is orthogonal to ξi,t.

Similarly, since materials and labor are chosen contemporaneously, we use their lagged values as

instruments as those are uncorrelated with ξi,t. Now we move on to the CRS restriction’s moment

condition.

Let Σi,t(·) denote a firm’s returns to scale that takes the production function parameters as an

input. The returns to scale are given by

Σi,t(β) = ∑
j∈J

∂ f (xi,t; β)

∂xj
i,t

. (A12)

CRS implies that Equation (A12) is set to 1. Therefore, the moment conditions that includes the

CRS restriction are given by

E

[
ξi,t(β̂) · z̃i,t

Σi,t(β̂)− 1

]
= 0. (A13)

Since we are using a translog production function, we can write the CRS restriction as a linear

operator. Let β̃ = (1, β⊺)
⊺ and x̃i,t =

(
1, x⊺i,t

)⊺
, then we have

Σi,t(β)− 1 = (Rβ̃)⊺x̃i,t, (A14)

where

R =



−1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 2 1 1 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 1 2


.

When we compute the norm of the moment conditions, we use the identity matrix as the weight

matrix for our baseline specification with the CRS restriction. To estimate a version without this

restriction, we replace the last diagonal entry of the weight matrix from 1 to 0, which corresponds

to Equation (A14).

Once we construct these objects, we simply need to run the optimization procedure to recover

the estimates. However, optimization routines do not necessarily find the global minimum for a

given starting point and boundary restriction. Indeed, if we utilize different starting points we

generally obtain different solutions. Therefore, we run the estimation 1,000 times with different

(randomly selected) starting points within the boundaries. We collect the estimates and the value

of the objective function for each iteration across all industries. We select the estimates associated

with the minimum evaluated objective function value across all iterations for each industry to be

the “global” solution. While this approach still does not guarantee a global solution, we find that
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the approach is robust to picking 100, 200, and 500 iterations. The parameter bounds are set to

be [0, 1] for the first-order terms and [−0.05, 0.05] for the second-order and interaction terms. The

estimated parameters for all industries have all their respective estimates within these bounds.

C Proofs and Derivations for Section 3

C.1 Proof of Proposition 2

Proof of Proposition 2. We start with Equation (15) and substitute in γ = ρζ/ρg, which yields

Ẽt
[
gi,t+s

]
= Et

[
gi,t+s

]
+ θ ∑

n≥1

(
ρζ

ρg

)n−1 (
Et+1−n[gi,t+s]− Et−n[gi,t+s]

)
.

From Equation (11), we have that Et−k
[
gi,t+s

]
= ρs−1

g Et−k
[
gi,t+1

]
, which we substitute into the

expression above to obtain

Ẽt
[
gi,t+s

]
= Et

[
gi,t+s

]
+ θρs−1

g ∑
n≥1

(
ρζ

ρg

)n−1 (
Et+1−n[gi,t+1]− Et−n[gi,t+1]

)
.

Using Equation (11) again, we have that Et+1−n[gi,t+1] = ρn−1
g Et+1−n

[
gi,t+2−n

]
, which we substi-

tute in to get

Ẽt
[
gi,t+s

]
= Et

[
gi,t+s

]
+ θρs−1

g ∑
n≥1

ρn−1
ζ

(
Et+1−n[gi,t+2−n]− Et−n[gi,t+2−n]

)
.

The rational revision is given by

Et+1−n[gi,t+2−n]− Et−n[gi,t+2−n] = ρggi,t+1−n + κi,t+1−n − ρ2
ggi,t−n − ρgκi,t−n,

= ρ2
ggi,t−n + ρgτi,t+1−n + ρgκi,t−n + κi,t+1−n − ρ2

ggi,t−n − ρgκi,t−n,

= ρgτi,t+1−n + κi,t+1−n.

Thus, we obtain

Ẽt
[
gi,t+s

]
= Et

[
gi,t+s

]
+ θρs−1

g ∑
n≥1

ρn−1
ζ

(
ρgτi,t+1−n + κi,t+1−n

)
.

Then using the definition of ui,t+1−n in Equation (18), we obtain

Ẽt
[
gi,t+s

]
= Et

[
gi,t+s

]
+ ρs−1

g ∑
n≥1

ρn−1
ζ ui,t+1−n.
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Iterating backward Equation (17), we get that

ζi,t = ∑
n≥1

ρn−1
ζ ui,t+1−n,

thus we obtain

Ẽt
[
gi,t+s

]
= Et

[
gi,t+s

]
+ ρs−1

g ζi,t,

which is Equation (16). Thus, we have proved Proposition 2.

C.2 Closed-Form Expressions of Regression Coefficients

Here we provide the closed-form expressions of the regression coefficients of interest in Equa-

tions (19) and (20) as well as discuss how these form the moments for the estimation procedure in

Section 4.2. See Bordalo et al. (2024a) for a more detailed discussion. To derive these expressions,

however, it is helpful to derive the expressions for the forecast error in earnings growth and the

revision to earnings growth expectations. The expected forecast error follows Equation (16)

Et
[
gi,t+s

]
− Ẽt

[
gi,t+s

]
= −ρs−1

g ζi,t.

The revision of earnings growth expectations is given by

Ẽt
[
gi,t+s

]
− Ẽt−1

[
gi,t+s

]
= Et

[
gi,t+s

]
− Et−1

[
gi,t+s

]
+ ρs−1

g ζi,t − ρs
gζi,t−1,

= ρs−1
g (ρggi,t + κi,t)− ρs

g(ρggi,t−1 + κi,t−1) + ρs−1
g ζi,t − ρs

gζi,t−1,

= ρs−1
g

(
ρgτi,t + κi,t

)
+ ρs−1

g ζi,t − ρs
gζi,t−1,

= ρs−1
g

(
ρgτi,t + κi,t

)
+ ρs−1

g

(
ρζζi,t−1 + ui,t − ρgζi,t−1

)
,

= ρs−1
g

[
(1 + θ)

(
ρgτi,t + κi,t

)
+ (ρζ − ρg)ζi,t−1

]
.

The derivation for this expression follows from the definitions from Equations (11), (17), and (18).
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These expressions are then used to compute the following

γ11 ≡ Var
[
Ẽt
[
gi,t+s

]
− Ẽt−1

[
gi,t+s

]]
= ρ2(s−1)

g σ2
u

[
(1 + θ)2 + (ρg − ρζ)

θ2

1 − ρ2
ζ

]
,

γ12 ≡ Cov
[
Ẽt [gt+s]− Ẽt−1 [gt+s] , Ẽt−1 [gt+s]

]
= −ρ2s−1

g (ρg − ρζ)θσ2
u

[
1

1 − ρgρζ

+
θ

1 − ρ2
ζ

]
,

γ22 ≡ Var
[
Ẽt−1 [gt+s]

]
= ρ2s

g σ2
u

[
1

1 − ρ2
g
+

2θ

1 − ρgρζ

+
θ2

1 − ρ2
ζ

]
,

γ1Y ≡ Cov
[
Ẽt [gt+s]− Ẽt−1 [gt+s] , gt+s − Ẽt [gt+s]

]
= −ρ2(s−1)

g θσ2
u

[
1 + θ

(
1 − ρζ

ρg − ρζ

1 − ρ2
ζ

)]
,

γ2Y ≡ Cov
[
Ẽt−1 [gt+s] , gt+s − Ẽt [gt+s]

]
= −ρ2s−1

g ρζθσ2
u

[
1 +

θ

1 − ρ2
ζ

]
,

where σ2
u ≡ ρ2

gσ2
τ + σ2

κ . With these expressions we can yield expressions for the regression coeffi-

cients of interest in Equations (19) and (20). The regression coefficients are given by

βFE
1 =

γ22γ1Y − γ12γ2Y

γ11γ22 − γ2
12

,

βFE
2 =

−γ12γ1Y + γ11γ2Y

γ11γ22 − γ2
12

,

βRev
1 =

γ12

γ22
.

We can also recover an expression for the total variance of LTG revisions with γ11, which we use to

estimate σu in Section 4.2.

D Implementation of Diagnostic Expectations Parameter Estimation

This section provides additional detail on the parameter estimation procedure described in

Section 4.2. Since the model moments are available in closed form, the implementation of the

minimization problem in (26) is relatively straightforward once the model moments, empirical

moments, and the weighting matrix W have been computed.

Because the objective function is highly nonlinear and the solution can depend on the initial

conditions, we solve the problem 250 times using randomly drawn starting values from the interior
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of the parameter bounds. For all firm types, we impose the following parameter bounds:

θ ∈ [0, 10],

ρζ ∈ [0, ρ̂g + ε],

ρg ∈ [0, 1],

σu ∈ [0, 0.05],

where ρ̂g is the estimated AR(1) persistence parameter of the realized LTG, and ε = 10−6 is a small

positive constant used to ensure smooth behavior of the optimizer near the boundary. We retain

the solution that yields the smallest value of the objective function across the 250 initializations.

In addition, we scale the objective function by a factor of 106 to improve numerical precision and

obtain a more accurate solution.

Once we obtain the estimates Θ̂, we compute standard errors using the Delta method, following

Hansen (1982), Hansen and Singleton (1982), and Newey and McFadden (1994). The estimated

variance-covariance matrix of the parameters is given by

V̂ar[Θ̂] =
(

D(Θ̂)⊺Ŵ−1D(Θ̂)
)−1

, (A15)

where Ŵ is the estimated weighting matrix, and D(Θ̂) denotes the Jacobian of the model mo-

ments with respect to the parameters, evaluated at Θ̂. We compute this Jacobian using automatic

differentiation. The standard errors are given by the square roots of the diagonal elements of

V̂ar[Θ̂].

To estimate W, we implement a clustered bootstrap procedure as in Horowitz (2001) and

Cameron and Miller (2015). We define firm as the clustering unit. Given N unique firms, we draw

N clusters with replacement for a total of B = 1,000 iterations. From the resulting B empirical

moment vectors, we compute the sample variance-covariance matrix and use it as our estimate of

W.

E Computational Method

The model presented in Section 5 is solved using standard numerical techniques, with policy

function iteration employed to efficiently recover both the capital policy function and the value

function. The problem features two exogenous state variables, productivity (ωi,t) and belief

distortions (ζi,t), which evolve according to the stochastic processes described in Equations (17)

and (28), as well as one endogenous state variable, capital (ki,t). We discretize the exogenous state

spaces using the method of Rouwenhorst (1995), generating a 35-point grid for productivity and

a 7-point grid for belief distortions. Capital follows a 150-point grid whose limits depend on the

model being solved.
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The first-order conditions of the problem (36) are given by

[li,t] : pi,t
∂yi,t

∂li,t
+

∂pi,t

∂yi,t

∂yi,t

∂li,t
yi,t − wi,t −

∂wi,t

∂li,t
li,t = 0 (A16)

[ki,t+1] : − 1 − ψ

(
ki,t+1

ki,t
− 1
)
+ βiẼt

[
∂Vi,t+1

∂ki,t+1

]
= 0, (A17)

and the envelope condition is given by

∂Vi,t

∂ki,t
= (1 − δ)− ψ

2

[
1 −

(
ki,t+1

ki,t

)2
]
+

pi,t

µj(i)

∂yi,t

∂ki,t
. (A18)

Since the labor policy function is static, given the state variables we can immediately recover

the current labor choice. Equation (A16) yields the pricing rule

pi,t = µj(i)νj(i)wi,t

(
∂yi,t

∂li,t

)−1

. (A19)

We can substitute in the production function, residual product demand, and residual product

supply (Equations (27), (29), and (30)) into Equation (A19) to obtain the labor policy function

li,t(ωi,t, ζi,t, ki,t) =

µj(i)νj(i)
ω

1
εi
i,tk

α
ε j(i)

−α

i,t

(1 − α)ωi,t


−

ε j(i)ηj(i)
αε j(i)ηj(i)−αηj(i)+ε j(i)+ηj(i)

. (A20)

We can use Equations (A17) and (A18) as well as substitute in Equations (33) and (34) to recover

the future capital policy function. This is given by

ki,t+1 = ki,t + ki,tψ
−1

[
−1 + βẼt

[
(1 − δ)− ψ

2

[
1 −

(
ki,t+2

ki,t+1

)2
]
+

pi,t+1

µj(i)

∂yi,t+1

∂ki,t+1

]]
. (A21)

Then we substitute Equation (A20) into Equation (A21) during the iteration process to numerically

recover Equation (A21).
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